22356

Приложение теории вычетов

Лекция

Математика и математический анализ

Напомним что мероморфной называется функция fz все конечные особые точки которой являются полюсами. в любой ограниченной области такая функция может иметь лишь конечное число полюсов то все ее полюсы можно пронумеровать например в порядке не убывания модулей: Будем обозначать главную часть fz в точке т. Если мероморфная функция fz имеет лишь конечное число полюсов и кроме того является либо правильной регулярной ее точкой либо полюсом то эта функция представляется в виде суммы своих главных частей 3 и...

Русский

2013-08-04

797 KB

24 чел.

Приложение теории вычетов.

Разложение мероморфных функций на простейшие дроби.

Напомним, что мероморфной называется функция f(z), все конечные особые точки которой являются полюсами. Т.к. в любой ограниченной области такая функция может иметь лишь конечное* число полюсов, то все ее полюсы можно пронумеровать, например, в порядке не убывания модулей:  

Будем обозначать  главную часть f(z) в точке , т.е.

                                                                                            (1)

и через

                                                       -                                             (2)

ее главную часть в бесконечно удаленной точке (если последняя также является полюсом).

Функции  называются простейшими дробями, а g(z) – целой частью f(z).

Теорема 1. Если мероморфная функция f(z) имеет лишь конечное число полюсов  и, кроме того,  является либо правильной (регулярной) ее точкой, либо полюсом, то эта функция представляется в виде суммы своих главных частей

         (3)

и, следовательно, дробно рациональна.

(Функция g(z) входит в (3) лишь в том случае, если  является полюсом).

Доказательство. Для доказательства рассмотрим разность

.

Функция  регулярна в любой точке , ибо из разложения Лорана f(z) в окрестности  главная часть устранена вычитанием , а остальные члены  аналитичны в этой точке. То же рассуждение относится к точке , а в точках  все члены  регулярны.

Итак, функция  регулярна в замкнутой плоскости z и по теореме Лиувилля является постоянной.

Формула (3) доказана, а из нее вытекает после приведения всех дробей к общему знаменателю, что f(z) является отношением двух многочленов, т.е. является дробно рациональной функцией. Ч.т.д.

Такого рода разложение можно построить и для произвольной мероморфной функции. Однако в общем случае имеется бесконечно много главных частей, а конечная сумма в (3) заменяется рядом и возникает вопрос о сходимости этого ряда. Вообще говоря, ряд (3) оказывается расходящимся, и для обеспечения сходимости к главным частям приходится добавлять некоторые выражения.

Будем понимать под правильной системой контуров совокупность замкнутых кривых, удовлетворяющих следующим условиям: 1)  содержит внутри себя точку z = 0, каждый контур  находится внутри области, ограниченной контуром ; 2) кратчайшее расстояние  от точек  до начала координат неограниченно возрастает с ростом n; 3) отношение длины  кривой  к  остается ограниченным:

                                                                                      (4)

Имеет место

Теорема 2 (Коши). Пусть все полюсы  мероморфной функции f(z), регулярной в точке , являются простыми и занумерованы в порядке неубывания их модулей: . Если функция f(z) ограничена на некоторой правильной системе контуров  , т.е.

                                 ,                                          (5)

то

                             ,                                       (6)

где . Ряд (6) сходится равномерно в каждой ограниченной области с выколотыми в ней полюсами функции f(z).

Доказательство. Рассмотрим интеграл* 

,       (7)

где  ( - область внутри ) и . Обозначим . В области  функция  имеет простые полюсы ; точка  является либо простым полюсом, либо точкой регулярности (если f(0)=0) для функции .

По теореме о вычетах

.      (8)

Далее, имеем**

                                             ,                                              (9)

                                            ,                                      (10)

                     ;                            (11)

Подставляя (9) - (11) в (8), получим

,

откуда в силу равенства  находим

                                      (12)

Оценим . Пусть D – ограниченная область. Тогда существует круг  такой, что . Имеем

.

Здесь , ( - кратчайшее расстояние от начала координат до контура ), . Поэтому

,

т.к.  в силу (4). Из этой оценки и условия  при  вытекает, что  при  равномерно по .Переходя в равенстве (12) к пределу при , получаем

                          .                              (13)

Формулу (13) можно записать в виде (6) считая, что суммирование в (6) производится в следующем порядке: сначала берутся слагаемые, которые относятся к полюсам лежащим внутри , затем к этим слагаемым последовательно добавляются группы слагаемых, относящиеся к полюсам, лежащим между  и , между  и  и т.д. Теорема доказана.

Замечание 1. Если ряд в (6) сходится абсолютно, то порядок суммирования безразличен.

Замечание 2. Теорему 2 можно обобщить, заменив неравенство (5) следующим

                              ,                                        (14)

где  - целое (при сохранении остальных условий теоремы 2).В этом случае имеет место следующая формула

        .                        (15)

Для доказательства формулы (15) достаточно применить теорему о вычетах к интегралу

.

Разложение функции  на элементарные дроби.

Рассмотрим функцию . Эта функция является мероморфной, имеет простые полюсы в точках , не имеет других конечных особых точек и . Покажем, что функция f(z) ограничена на правильной системе контуров , где  - квадрат  (см. рис.) с центром в точке , стороны которого параллельны координатным осям, а их длины равны

                                                             

                                                                 

                                                                        

 

Пусть , тогда , где , и, следовательно, , откуда получаем

                                                                      (16)

Пусть теперь , тогда , где

,

откуда находим

                            .                                 (17)

Так как , то неравенства (16) и (17) имеют место соответственно и на сторонах  и  квадрата , т.е. на контуре .

Итак,

Отсюда следует, что функция  также ограничена на системе контуров . Далее , так как функция , регулярная в точке , нечетна. Итак, в формуле (6),  и, следовательно,

                                     ,                                       (18)

где штрих означает, что .

Заметим, что между контурами  и  лежат ровно два полюса функции , а именно  и . Объединяя в сумме (18) слагаемые, соответствующие этим полюсам, получаем

.

Таким образом, справедлива формула

                                      .                                            (19)

Заменяя в (18) и (19) z на , получим

                 .                         (20)

Заменяя в (19) z на  и сокращая на

                                               .                                 (21)

Отсюда следует

                   .                     (22)

Из формулы  и из (19) получаем

   .              (23)

Аналогично, из формулы , выводим

      .        (24)

Так как , то, дифференцируя равномерно сходящийся ряд (18), получаем

                       .                        (25)

Разложение целых функций в бесконечные произведения.

Известно, что всякий многочлен n-ой степени  можно представить в виде произведения

                  ,                        (1)

где  - корни этого многочлена (среди них могут быть и кратные).

Формулу (1) можно обобщить (при некоторых условиях) на целые функции. Действительно, пусть, например, целая функция  отлична от нуля во всей комплексной плоскости, тогда функция , где взята одна из регулярных ветвей логарифма, также является целой, причем

                                                       .                                                    (2)

Если теперь целая функция  имеет лишь конечное число нулей   - кратность нуля , то функция , где , нигде не обращается в нуль и, следовательно, представима в виде (2), откуда получаем формулу:

              ,                    (3)

где  - некоторая целая функция, причем.

В случае, когда  имеет счетное число нулей в формуле, обобщающей (3), появится бесконечное произведение.

Определение 1. Бесконечное произведение

                                                                                                          (4)

называется сходящимся, если все его множители отличны от нуля и существует конечный и отличный от нуля предел A последовательности:

.

Отметим, что необходимым и достаточным условием* сходимости бесконечного произведения (4) является сходимость рядов

                                             ,                                    (5)

где . .

Определение 2. Бесконечное произведение (4) называется абсолютно сходящимся, если ряды (5) сходятся абсолютно.

Можно показать**, что абсолютная сходимость бесконечного произведения (4) равносильна сходимости ряда .

Понятие сходимости бесконечного произведения обобщается на случай, когда его множители – функции комплексной переменной. Рассмотрим бесконечное произведение

                                                       ,                                              (6)

где  - функции, регулярные в области D.

Определение 3. Бесконечное произведение (6) называется сходящимся в области D, (если его множители за исключением, быть может, конечного их числа, не обращаются в нуль в этой области и если произведение отличных от нуля множителей сходится в каждой точке области D.

Определение 4. Бесконечное произведение (6) (множители которого отличны от нуля в области D) называется равномерно сходящимся в этой области, если последовательность функций  равномерно сходится в области D.

Если бесконечное произведение (6) равномерно сходится в области D, то

функция  регулярна в области D в силу теоремы Вейерштрасса.

Из теоремы 2 о разложении мероморфной функции на элементарные дроби можно получить следующую теорему о представлении целой функции в виде бесконечного произведения*.

Теорема 3. Если целая функция f(z) такова, что мероморфная функция  удовлетворяет условиям теоремы 2, то

               ,                          (7)

где - кратность нуля  функции f(z).

Бесконечное произведение (7) равномерно сходится в каждой ограниченной части плоскости.

Доказательство. Функция  имеет простые полюсы в точках , где - нули функции , и не имеет других полюсов. Тогда , где - кратность нуля  функции . По теореме 2 имеем:

                                  .                                      (8)

Т.к. , где для логарифма выбрана аналитическая ветвь, то интегрируя ряд (8) по некоторой кривой, соединяющей точки 0 и z и не проходящей через нули функции , получим

                    .                              (9)

Потенцируя (9), находим , где , и формула (7) доказана.

Замечание 3. В условиях, указанных в замечании 2, формула (7) заменяется следующей

,

где ,  - многочлен степени не выше p.

Разложение синуса в бесконечное произведение.

Рассмотрим целую функцию . Эта функция имеет простые нули в точках . Далее, функция  удовлетворяет условиям теоремы 3 и, следовательно, можно применить формулу (7). Т.к. , то  и по формуле (7) имеем:

                            .                                      (10)

В этой формуле сгруппированы множители, относящиеся к нулям  и   синуса. Преобразуя выражение в квадратных скобках, окончательно получим:

                                               .                                         (11)

Пример.

Целая функция :

.

Т.к. , то с использованием (11) получим

.

* Во всей плоскости полюсов может быть бесконечно много.

* )      

** В простом полюсе ;

* Из определения следует, что необходимым условием является , т.е. . Т.к. произведение  сходится, то существует . В соответствии с критерием Коши ;

** Т.к. , то, учитывая, что , имеем . Т.е. для любого положительного  существует такое N, зависящее от , что выполняются неравенства , ибо ряд для знакопеременный.

* Для простоты покажем, что . Если же  является нулем кратности m для , то нужно рассмотреть функцию ;

4


 

А также другие работы, которые могут Вас заинтересовать

43001. Круглый фасонный резец с радиальной подачей для обработки деталей 1.1 MB
  Форма режущего лезвия определяется формой обрабатываемого изделия формой профиля обрабатываемой поверхности. 57 квалитеты; Идентичность формы причем точность фасонного резца на одиндва класса выше детали; Высокая производительность обработки за счет экономии времени обрабатываются одновременно все участки фасонного профиля детали; Большой срок службы за счет увеличения количества переточек по передней поверхности; Применение фасонных резцов не требует высокой квалификации рабочего. При изучении исходных данных следует...
43002. Динамический и силовой анализ механизма 99.5 KB
  Динамический анализ механизма включает в себя определение движущего момента такого, чтобы звенья механизма двигались с заданными скоростями при заданных нагрузках и массах действующих на механизм. Формула для определения движущего момента
43003. Расчет заготовки коробчатой формы 364.5 KB
  Основной критерий оборудования − это номинальное усилие пресса. 1 операция Вырубка заготовки При вырубке круглой заготовки необходимо учитывать следующие усилия: Pвыр− усилие затрачиваемое на вырубку заготовки пуансоном; Рпрот− усилие затрачиваемое на проталкивание заготовки пуансоном через отверстие в матрице; Ртр− усилие затрачиваемое на трение отхода о пуансон. Усилие операции: Pоп = Pвыр Рпрот Ртр. Усилие вырубки заготовки: k=1113 коэффициент учитывающий притупление режущих кромок неравномерность зазора...
43004. Создание проектной базы для внедрения в отечественную строительную практику комплектной системы KNAUF, обеспечивающей "сухой" (без использования мокрых процессов) способ высококачественной отделки помещений 2.22 MB
  Сборные гипсокартонные перегородки системы KNUF применяются как внутренние ограждающие конструкции помещений с сухим нормальным и влажным режимом см. Перегородки и узлы разработанные в настоящей серии предназначены для применения в жилых общественных и производственных зданиях: любых конструктивных систем и типов; любого уровня ответственности включая повышенный; любой степени огнестойкости включая Iую степень; различной этажности с высотой зданий не более 60 м; возводимых в ветровых районах до Vго включительно;...
43005. Проектування промислового будинку, район будівництва, м.Кременчук 183.5 KB
  Опис планувальнопросторового рішення будинку. Вихідні дані Для проектування промислового будинку в завданні зазначається: район будівництва м. Перший етап: вивчення завдання методичних вказівок літератури розробка варіантів їх обємнопланувальних рішень розрахунок адміністративнопобутових приміщень вибір конструкцій виробничого цеху розробка ескізних рішень промислового будинку які затверджуються викладачем. Маркувальний план виробничого будинку.
43006. Технологическая карта на многоэтажное каркасное здание 435 KB
  Для правильного и эффективного решения всех вопросов, касающихся технологии производства монолитных и монтажных работ, выполнен оптимальный выбор методов и способов производства работ: метод производства монолитных работ - раздельный, направление развития процесса - по горизонтали вдоль здания. Здание условно поделено на две захватки, гранича которых проходит через ось 7. Монтаж стеновых панелей производится параллельно с возведение каркаса здания, с отставанием на одну захватку.
43007. Разработка направления и совершенствования логистической деятельности и процесса транспортировки в фокусном звене цепи поставок 1.02 MB
  Возникает необходимость регулирования всей системы движения товаров при этом эффективность цепи поставок определяется уровнем организационного оформления хозяйственных связей всех участников товародвижения. Изучается транспортировка в цепи поставок с целью ознакомления с логистическими особенностями отдельных видов транспорта зависимостью логистических издержек в цепи поставок от параметров транспортировки способами обоснования оптимальных схем доставки грузов методами рациональной организации перевозок основными путями повышения уровня...
43008. Организация и обслуживание банкета по поводу международного женского дня 8 марта на 50 человек 772.5 KB
  В настоящее время ресторанное хозяйство развивается по различным направлениям. Появляется большое количество ресторанов с национальной кухней, появляются новые виды предприятий ресторанного хозяйства (пабы, суши-бары), в наши дни предприятия ресторанного хозяйства оснащаются автоматизированными системами ведения счетов, появляются новые профессии (сомелье, хостесс) и, в конце концов, современное предприятие ресторанного хозяйства становится местом красивого, приятного времяпрепровождения.