22356

Приложение теории вычетов

Лекция

Математика и математический анализ

Напомним что мероморфной называется функция fz все конечные особые точки которой являются полюсами. в любой ограниченной области такая функция может иметь лишь конечное число полюсов то все ее полюсы можно пронумеровать например в порядке не убывания модулей: Будем обозначать главную часть fz в точке т. Если мероморфная функция fz имеет лишь конечное число полюсов и кроме того является либо правильной регулярной ее точкой либо полюсом то эта функция представляется в виде суммы своих главных частей 3 и...

Русский

2013-08-04

797 KB

26 чел.

Приложение теории вычетов.

Разложение мероморфных функций на простейшие дроби.

Напомним, что мероморфной называется функция f(z), все конечные особые точки которой являются полюсами. Т.к. в любой ограниченной области такая функция может иметь лишь конечное* число полюсов, то все ее полюсы можно пронумеровать, например, в порядке не убывания модулей:  

Будем обозначать  главную часть f(z) в точке , т.е.

                                                                                            (1)

и через

                                                       -                                             (2)

ее главную часть в бесконечно удаленной точке (если последняя также является полюсом).

Функции  называются простейшими дробями, а g(z) – целой частью f(z).

Теорема 1. Если мероморфная функция f(z) имеет лишь конечное число полюсов  и, кроме того,  является либо правильной (регулярной) ее точкой, либо полюсом, то эта функция представляется в виде суммы своих главных частей

         (3)

и, следовательно, дробно рациональна.

(Функция g(z) входит в (3) лишь в том случае, если  является полюсом).

Доказательство. Для доказательства рассмотрим разность

.

Функция  регулярна в любой точке , ибо из разложения Лорана f(z) в окрестности  главная часть устранена вычитанием , а остальные члены  аналитичны в этой точке. То же рассуждение относится к точке , а в точках  все члены  регулярны.

Итак, функция  регулярна в замкнутой плоскости z и по теореме Лиувилля является постоянной.

Формула (3) доказана, а из нее вытекает после приведения всех дробей к общему знаменателю, что f(z) является отношением двух многочленов, т.е. является дробно рациональной функцией. Ч.т.д.

Такого рода разложение можно построить и для произвольной мероморфной функции. Однако в общем случае имеется бесконечно много главных частей, а конечная сумма в (3) заменяется рядом и возникает вопрос о сходимости этого ряда. Вообще говоря, ряд (3) оказывается расходящимся, и для обеспечения сходимости к главным частям приходится добавлять некоторые выражения.

Будем понимать под правильной системой контуров совокупность замкнутых кривых, удовлетворяющих следующим условиям: 1)  содержит внутри себя точку z = 0, каждый контур  находится внутри области, ограниченной контуром ; 2) кратчайшее расстояние  от точек  до начала координат неограниченно возрастает с ростом n; 3) отношение длины  кривой  к  остается ограниченным:

                                                                                      (4)

Имеет место

Теорема 2 (Коши). Пусть все полюсы  мероморфной функции f(z), регулярной в точке , являются простыми и занумерованы в порядке неубывания их модулей: . Если функция f(z) ограничена на некоторой правильной системе контуров  , т.е.

                                 ,                                          (5)

то

                             ,                                       (6)

где . Ряд (6) сходится равномерно в каждой ограниченной области с выколотыми в ней полюсами функции f(z).

Доказательство. Рассмотрим интеграл* 

,       (7)

где  ( - область внутри ) и . Обозначим . В области  функция  имеет простые полюсы ; точка  является либо простым полюсом, либо точкой регулярности (если f(0)=0) для функции .

По теореме о вычетах

.      (8)

Далее, имеем**

                                             ,                                              (9)

                                            ,                                      (10)

                     ;                            (11)

Подставляя (9) - (11) в (8), получим

,

откуда в силу равенства  находим

                                      (12)

Оценим . Пусть D – ограниченная область. Тогда существует круг  такой, что . Имеем

.

Здесь , ( - кратчайшее расстояние от начала координат до контура ), . Поэтому

,

т.к.  в силу (4). Из этой оценки и условия  при  вытекает, что  при  равномерно по .Переходя в равенстве (12) к пределу при , получаем

                          .                              (13)

Формулу (13) можно записать в виде (6) считая, что суммирование в (6) производится в следующем порядке: сначала берутся слагаемые, которые относятся к полюсам лежащим внутри , затем к этим слагаемым последовательно добавляются группы слагаемых, относящиеся к полюсам, лежащим между  и , между  и  и т.д. Теорема доказана.

Замечание 1. Если ряд в (6) сходится абсолютно, то порядок суммирования безразличен.

Замечание 2. Теорему 2 можно обобщить, заменив неравенство (5) следующим

                              ,                                        (14)

где  - целое (при сохранении остальных условий теоремы 2).В этом случае имеет место следующая формула

        .                        (15)

Для доказательства формулы (15) достаточно применить теорему о вычетах к интегралу

.

Разложение функции  на элементарные дроби.

Рассмотрим функцию . Эта функция является мероморфной, имеет простые полюсы в точках , не имеет других конечных особых точек и . Покажем, что функция f(z) ограничена на правильной системе контуров , где  - квадрат  (см. рис.) с центром в точке , стороны которого параллельны координатным осям, а их длины равны

                                                             

                                                                 

                                                                        

 

Пусть , тогда , где , и, следовательно, , откуда получаем

                                                                      (16)

Пусть теперь , тогда , где

,

откуда находим

                            .                                 (17)

Так как , то неравенства (16) и (17) имеют место соответственно и на сторонах  и  квадрата , т.е. на контуре .

Итак,

Отсюда следует, что функция  также ограничена на системе контуров . Далее , так как функция , регулярная в точке , нечетна. Итак, в формуле (6),  и, следовательно,

                                     ,                                       (18)

где штрих означает, что .

Заметим, что между контурами  и  лежат ровно два полюса функции , а именно  и . Объединяя в сумме (18) слагаемые, соответствующие этим полюсам, получаем

.

Таким образом, справедлива формула

                                      .                                            (19)

Заменяя в (18) и (19) z на , получим

                 .                         (20)

Заменяя в (19) z на  и сокращая на

                                               .                                 (21)

Отсюда следует

                   .                     (22)

Из формулы  и из (19) получаем

   .              (23)

Аналогично, из формулы , выводим

      .        (24)

Так как , то, дифференцируя равномерно сходящийся ряд (18), получаем

                       .                        (25)

Разложение целых функций в бесконечные произведения.

Известно, что всякий многочлен n-ой степени  можно представить в виде произведения

                  ,                        (1)

где  - корни этого многочлена (среди них могут быть и кратные).

Формулу (1) можно обобщить (при некоторых условиях) на целые функции. Действительно, пусть, например, целая функция  отлична от нуля во всей комплексной плоскости, тогда функция , где взята одна из регулярных ветвей логарифма, также является целой, причем

                                                       .                                                    (2)

Если теперь целая функция  имеет лишь конечное число нулей   - кратность нуля , то функция , где , нигде не обращается в нуль и, следовательно, представима в виде (2), откуда получаем формулу:

              ,                    (3)

где  - некоторая целая функция, причем.

В случае, когда  имеет счетное число нулей в формуле, обобщающей (3), появится бесконечное произведение.

Определение 1. Бесконечное произведение

                                                                                                          (4)

называется сходящимся, если все его множители отличны от нуля и существует конечный и отличный от нуля предел A последовательности:

.

Отметим, что необходимым и достаточным условием* сходимости бесконечного произведения (4) является сходимость рядов

                                             ,                                    (5)

где . .

Определение 2. Бесконечное произведение (4) называется абсолютно сходящимся, если ряды (5) сходятся абсолютно.

Можно показать**, что абсолютная сходимость бесконечного произведения (4) равносильна сходимости ряда .

Понятие сходимости бесконечного произведения обобщается на случай, когда его множители – функции комплексной переменной. Рассмотрим бесконечное произведение

                                                       ,                                              (6)

где  - функции, регулярные в области D.

Определение 3. Бесконечное произведение (6) называется сходящимся в области D, (если его множители за исключением, быть может, конечного их числа, не обращаются в нуль в этой области и если произведение отличных от нуля множителей сходится в каждой точке области D.

Определение 4. Бесконечное произведение (6) (множители которого отличны от нуля в области D) называется равномерно сходящимся в этой области, если последовательность функций  равномерно сходится в области D.

Если бесконечное произведение (6) равномерно сходится в области D, то

функция  регулярна в области D в силу теоремы Вейерштрасса.

Из теоремы 2 о разложении мероморфной функции на элементарные дроби можно получить следующую теорему о представлении целой функции в виде бесконечного произведения*.

Теорема 3. Если целая функция f(z) такова, что мероморфная функция  удовлетворяет условиям теоремы 2, то

               ,                          (7)

где - кратность нуля  функции f(z).

Бесконечное произведение (7) равномерно сходится в каждой ограниченной части плоскости.

Доказательство. Функция  имеет простые полюсы в точках , где - нули функции , и не имеет других полюсов. Тогда , где - кратность нуля  функции . По теореме 2 имеем:

                                  .                                      (8)

Т.к. , где для логарифма выбрана аналитическая ветвь, то интегрируя ряд (8) по некоторой кривой, соединяющей точки 0 и z и не проходящей через нули функции , получим

                    .                              (9)

Потенцируя (9), находим , где , и формула (7) доказана.

Замечание 3. В условиях, указанных в замечании 2, формула (7) заменяется следующей

,

где ,  - многочлен степени не выше p.

Разложение синуса в бесконечное произведение.

Рассмотрим целую функцию . Эта функция имеет простые нули в точках . Далее, функция  удовлетворяет условиям теоремы 3 и, следовательно, можно применить формулу (7). Т.к. , то  и по формуле (7) имеем:

                            .                                      (10)

В этой формуле сгруппированы множители, относящиеся к нулям  и   синуса. Преобразуя выражение в квадратных скобках, окончательно получим:

                                               .                                         (11)

Пример.

Целая функция :

.

Т.к. , то с использованием (11) получим

.

* Во всей плоскости полюсов может быть бесконечно много.

* )      

** В простом полюсе ;

* Из определения следует, что необходимым условием является , т.е. . Т.к. произведение  сходится, то существует . В соответствии с критерием Коши ;

** Т.к. , то, учитывая, что , имеем . Т.е. для любого положительного  существует такое N, зависящее от , что выполняются неравенства , ибо ряд для знакопеременный.

* Для простоты покажем, что . Если же  является нулем кратности m для , то нужно рассмотреть функцию ;

4


 

А также другие работы, которые могут Вас заинтересовать

22554. Ядро сечения при внецентренном сжатии 75.5 KB
  Ядро сечения при внецентренном сжатии При конструировании стержней из материалов плохо сопротивляющихся растяжению бетон весьма желательно добиться того чтобы все сечение работало лишь на сжатие. Этого можно достигнуть не давая точке приложения силы Р слишком далеко отходить от центра тяжести сечения ограничивая величину эксцентриситета. Конструктору желательно заранее знать какой эксцентриситет при выбранном типе сечения можно допустить не рискуя вызвать в сечениях стержня напряжений разных знаков. Здесь вводится понятие о так...
22555. Совместные действия изгиба и кручения призматического стержня 55 KB
  Совместные действия изгиба и кручения призматического стержня Исследуем этот вид деформации стержня на примере расчета вала кругового кольцевого поперечного сечения на совместное действие изгиба и кручения рис. Строим эпюры изгибающих моментов My и My. У кругового и кольцевого поперечного сечений все центральные оси главные поэтому косого изгиба у вала вообще не может быть следовательно нет смысла в каждом сечении иметь два изгибающих момента Mx и My а целесообразно их заменить результирующим суммарным изгибающим моментом рис....
22556. Расчет балок переменного сечения 76.5 KB
  Так как изгибающие моменты обычно меняются по длине балки то подбирая ее сечение по наибольшему изгибающему моменту мы получаем излишний запас материала во всех сечениях балки кроме того которому соответствует . Для экономии материала а также для увеличения в нужных случаях гибкости балок применяют балки равного сопротивления. Под этим названием подразумевают балки у которых во всех сечениях наибольшее нормальное напряжение одинаково и должно быть равно допускаемому. Условие определяющее форму такой балки имеет вид и Здесь Мх и...
22557. Расчет балки на упругом основании 78.5 KB
  Расчет балки на упругом основании.1 на упругое основание оказывающее в каждой точке на балку реакцию пропорциональную у прогибу балки в этой точке. Расчетная схема балки на упругом основании. Будем считать что основание оказывает реакцию при прогибах балки как вниз так и вверх.
22558. Энергетические методы расчета деформаций 75.5 KB
  Он основан на применении закона сохранения энергии. При статическом растяжении или сжатии упругого стержня происходит превращение потенциальной энергии из одного вида в другой; часть потенциальной энергии действующего на стержень груза полностью переходит в потенциальную энергию деформации стержня. Это явление имеет место при любом виде деформации всякой упругой конструкции при статической нагрузке; такую конструкцию можно рассматривать как своеобразную машину преобразующую один вид потенциальной энергии в другой. При этих условиях...
22559. Теорема Кастильяно 133 KB
  Будем решать эту задачу в несколько приемов; сначала рассмотрим более простой случай Рис. Мы представим себе что для перехода к смежному деформированному состоянию к силе сделана бесконечно малая добавка Рис. Предположим что мы сначала нагрузили нашу балку грузом ; балка очень немного прогнется Рис. Рис.
22560. Теоремы о взаимности работ и Максвелла — Мора 150 KB
  Если к балке нагруженной силой приложить затем статически силу в сечении 2 то к прогибу точки приложения силы от этой же силы прибавится Рис.1 прогиб от силы равный ; первый значок у буквы у указывает точку для которой вычисляется прогиб; второй обозначает силу вызывающую этот прогиб. Расчетная схема к теореме о взаимности работ Полная работа внешних сил составится из трех частей: работы силы на вызванном ею прогибе т. работы силы на вызванном ею прогибе ее точки приложения т.
22561. Часова організація памяті 26.5 KB
  Часова організація памяті Безпосередній відбиток забезпечує утриманнялише протягом 50500 мс достатньо повного і детального образу картини зовнішнього світу що сприймаеться органами чуття. Цей вид памяті має різні параметри у кожної людини змінюється протягом життя індивіда і залежить від функціонального стану організму. Ця память відрізняеться від попердньої тим що дозволяє відтворювати будь яку частину представленого матеріалу і тим самим деякий час утримувати в памяті визначену кількість інформації. Не вся інформація з системи...