22361

Преобразование Лапласа и ее доказательство

Лекция

Математика и математический анализ

Это утверждение вытекает непосредственно из неравенства. Отсда следует, что, если, оставаясь внутри любого угла , где сколь угодно мало, причем эта сходимость равномерна относительно. Если, в частности, аналитическая...

Русский

2015-01-19

382 KB

11 чел.

Преобразование Лапласа

Функцией-оригиналом называют любую комплексную функцию  действительного аргумента t, удовлетворяющую следующим условиям:

  1.  Функция  удовлетворяет условиям Гельдера всюду на оси t, кроме отдельных точек, где она имеет разрывы рода, причем на каждом бесконечном интервале таких точек конечное число. Это означает, что для каждого t (кроме исключительных точек) существуют положительные постоянные А, и  такие, что

                (1)

   для всех ,.

  1.  Функция =0, для всех t<0.
  2.  Существуют такие постоянные М>0,, что  для всех t

      (2).

Число  называют показателем роста (*) :для ограниченных оригиналов, очевидно, =0.

Простейшей функцией-оригиналом является так называемая единичная функция (функция Хевисайда):

Если функция  удовлетворяет условиям 1) и 3) и не удовлетворяет условию 2), то произведение

будет удолетворять  и условию 2), т.е. будет оригиналом. Для простоты записи будем, как правило, опускать множитель , полагая, что все функции, которые мы будем рассматривать, равны нулю при t<0.

(например вместо  будем писать 1, вместо  и т.д.).

Более точно в качестве показателя роста принимают нижнюю граньтаких чисел s,что остается ограниченной при .

Изображением функции (по Лапласу) называют функцию комплексной переменной , определяемую соотношением

,           (3)

где интеграл берется на положительной полуоси. Эту связь между функцией  и ее изображением  будем записывать символом

или.

Теорема 1. Для всякого оригинала  изображение определено в полуплоскости Re p>, где -показатель роста , и является в этой полуплоскости регулярной функцией.

Доказательство. В самом деле, при  Re p=s>, интеграл (3) абсолютно сходится, ибо в силу неравенства (1) и (2) он мажорируется сходящимся интегралом

         

      (4)

.
Далее, в любой полуплоскости
Re p интеграл, получающийся из интеграла (3) дифференцированием по p, сходится равномерно, ибо он так же мажорируетсясходящимся интегралом, не зависящим от p,

 (5)

Отсюда на основании теремы о равномерно сходящемся интеграле от функции двух переменных заключаем, что функция  в любой точке полуплоскости Re p> обладает производной, т.е. является регулярной функцией *). Ч.т.д.

Регулярность  в полуплоскости вытекает просто из того, что в полуплоскости  интеграл (3) сходится равномерно функция  аналитична при Re p>.

Замечание 1. Интеграл Лапласа (3) определяется вообще говоря, изображением  лишь в полуплоскости Re p>. На самом деле часто область определения изображения значительно шире этой полуплоскости. Поэтому в таких случаях можно рассматривать аналитическое продолжение изображений за прямую Re p=и пользоваться тем, что соотношения между различными изображениями, которые устанавливаются в полуплоскости сходимости соответствующих интегралов Лапласа, при таком продолжении сохраняются.

Замечание 2. Если точка p стремится к бесконечности так что Re p=s неограниченно возрастает, то :

.              (6)

Это утверждение вытекает непосредственно из неравенства (4). Отсда следует, что , если , оставаясь внутри любого угла , где сколь угодно мало, причем эта сходимость равномерна относительно . Если, в частности,  аналитическая в б.у.т., то при  по любому пути; следовательно  просто должна иметь нуль в бесконечности.

Выведем формулу, определяющую функцию-оригинал по её изображению, а затем дадим строгое её доказательство.

Рассмотрим интеграл

,                    (7)

взятый вдоль прямой , проходимый снизу, вверх. Обозначим через  и части окружности , лежащие соответственно слева и справа от прямой , а через a-ib и a+ib-концы и .

Пусть >0, т.к.  при  равномерно относительно , то по лемме Жордана

.

Следовательно, из теоремы Коши о вычетах

,

в пределе при получим:

, >0.

Если t<0, то по лемме Жордана имеем , а по теореме Коши

,

откуда в пределе при получим: ,<0.

Таким образом, интеграл (7) представляет единичную функцию.

Заменив в (7)  на , где фиксированное число, получим

.                    (8)

Подставляя в (8) , затем  и вычета второй интеграл из первого, получим представление ступенчатой функции

 

 

Аналогично для ступенчатой функции, изображенной на рисунке.

                                                  (9) где  

Если теперь увеличивать число n так, чтобы  стремиться к нулю, то  будет бесконечно малой величиной, эквивалентной , и сумма в фигурных скобках в (9) в пределе перейдет в интеграл, т.е. в пределе


Устремляя
к бесконечности и обозначая через

                          (10)

преобразование Лапласа функции , получим искомое выражение оригинала через его изображение.

                 (11)

формула (11) “обращает” формулу (10).

Теорема 2. Если функция  является оригиналом, т.е. удолетворяет условию 1)-3), а  служит ее изображением, то в любой точке t, где удолетворяет условию Гельдера, справедливо равенство

(11)

где интеграл берется вдоль любой прямой   и понимается в смысле главного значения (т.е. как предел интегрирования вдоль отрезка    (a-b, a+ib) при ).

Доказательство. Рассмотрим интеграл

Т.к. в полуплоскости  интегралсходится равномерно относительно p, то можно изменить порядок интегрирования, и мы получим

Полагая и учитывая, что  для всех t<0, получим

         (12)

Интеграл во втором слагаемом- это интеграл Эйлера он равен  при любом b>0. Таким образом, для доказательства того, что  нужно доказать, что первые слагаемые в (12) стремятся к нулю при .

Лемма. Для любой функции , интегрируемой на отрезке

Доказательство. Действительно, если  - непрерывно дифференцируема на, то интегрируем по частям

при .

Если же -производная интегрируемая функция, то для  найдется непрерывная дифференцируемая функция  такая, что

, тогда

,

где первое слагаемое справа по модулю не превосходит  для всех b (ибо ), а второе для достаточно больших b (по теореме, которая доказана). Лемма доказана.

Фиксируем теперь и перепишем первый интеграл в (12) так

Здесь второе и третье слагаемое - сходящиеся интегралы, поэтому каждый из них можно сделать по модулю <, если выбрать В достаточно большим. Можно при ? в первом слагаемом - интегрировать функции на отрезке   [-B,B], т.к. в силу условий Гельдера в окрестности  имеет

, где .

Поэтому в силу леммы первое слагаемое по модулю будет < при достаточно больших b. Таким образом, , что полностью доказывает теорему.

Теорема 3. Оригинал  вполне определяется своим изображением  с точностью до значений в точках разрыва .

Доказательство. В самом деле, по доказанному в теореме 2 значение оригинала в точке его непрерывности выражается через изображение по формуле (11). Значение оригинала в точках разрыва, очевидно, не влияют на изображение. Ч.т.д.

Следующая теорема содержит условия, достаточные для того, чтобы функция комплексных переменных служила изображением некоторого оригинала.


Теорема 4.
Если функция  аналитична в полуплоскости

, стремится к нулю при  в любой полуплоскости  равномерно относительно  arg p  и интерграл  абсолютно сходится, то  является изображением функции

    (11)

Доказательство. Фиксируем некоторое число , тогда из (11) следует:

   (13)

Во внутреннем интеграле , поэтому за знак внутреннего интеграла можно вынести множитель и оставшийся интеграл

Отсюда видно, что этот интеграл сходится равномерно относительно t, и следовательно, в формуле (13) можно изменить порядок интегрирования, то есть:

  (14)

ибо в силу того, что  и t>0, внутренний интеграл сходится и равен . Далее, в силу условий теоремы на дуге окружности имеем  при , следовательно

,

и этот интеграл  при . Отсюда следует, что прямую, интегрирования в (14) можно заменить замкнутым контуром , составленным из и отрезка (a+ib,a-ib), проходимого сверху вниз (из-за минуса в (14)).

Но внутри аналитическая функция  имеет лишь одну особую точку - полюс первого порядка при с вычетом , следовательно,

 

Что и требовалось доказать.

При t<0 по лемме Жордана

,

поэтому прямую интегрирования в формуле (11) можно заменить тем же контуром . Таким образом, при t<0

,

ибо подынтегральная функция аналитична внутри .

Таким образом, условие 2) для оригинала выполняется. Далее, из (11)

,

так что и условие 3) также выполняется. На проверке условия 1) останавливаться не будем.


 

А также другие работы, которые могут Вас заинтересовать

3205. Корпоративные и локальные сети. Способы обработки, обмена и защиты инфомации 1.21 MB
  Корпоративная сеть - это сложная система, включающая тысячи самых разнообразных компонентов: компьютеры разных типов, начиная с настольных и кончая мейнфремами, системное и прикладное программное обеспечение, сетевые адаптеры, концентраторы, коммутаторы и маршрутизаторы, кабельную систему.
3206. Виды средних величин и методы их вычисления 93.42 KB
  Виды средних величин и методы их вычисления Средняя величина – это обобщающая характеристика множества индивидуальных значений некоторого количественного признака. Средняя должна вычисляться для совокупностей, состоящих из достаточно большого ч...
3207. Эксплуатация путевых строительных и погрузо-разгрузочных машин 1.88 MB
  Введение Машины и оборудование, применяемые при производстве бетонных и железобетонных работ, изготовлении и монтаже элементов армирования и возведении монолитных железобетонных конструкций, разделяются в зависимости от выполняемого технологического...
3208. Людвиг Фейербах. Предварительные тезисы к реформе философии 18.75 KB
  Людвиг Фейербах Предварительные тезисы к реформе философии С психологической точки зрения абсолют или бесконечное, в использовании спекулятивной философии, есть ни что иное, как нечто неопределенное, недетерминированное, это – абстракция от вся...
3209. Методы приближённого вычисления определенного интеграла 162.5 KB
  Задача вычисления интегралов возникает во многих областях прикладной математики. В большинстве случаев встречаются определённые интегралы от функций, первообразные которых не выражаются через элементарные функции. Кроме того, в приложениях приходится иметь дело с определёнными интегралами.
3210. Оценка экономической эффективности замены ленточной пилы на пресс, в проектируемом цехе на операции обрезка 68.94 KB
  Исходные данные Показатели Варианты аналог проект Годовой объем производства продукции, т Расход металла на 1т продукции, т/т Количество возвратных отходов, т/т Расход электроэнергии, кВтч/т Расход смазочных материалов, кг/т Стоимость: единицы обо...
3211. Основные характеристики башенных кранов 409.6 KB
  Назначение и устройство крана Башенные краны предназначены обслуживать территорию строительных площадок зданий и сооружений, складов, полигонов, погрузка и разгрузка материалов с транспорта — при выполнении строительно-монтажных и...
3212. Государственная санитарно-эпидемиологическая служба 26.38 KB
  Каждое общество стремится защитить себя. Защитить от врагов, недостаточно добропорядочных своих граждан, от болезней, от напастей и от всякого рода опасности. Опасности, которая в наше время приобретает все больший размах. Она может принима...
3213. Человек как уникальный вид живой природы 59.5 KB
  Человек относится к царству животных, так как он использует готовые вещества для питания, то есть гетеротрофен. Его клетки не имеют целлюлозных оболочек, нет хлоропластов- то есть состоит из типично животных клеток...