22366

Понятие сходящегося и расходящегося ряда

Лекция

Математика и математический анализ

Понятие сходящегося и расходящегося ряда. Рассмотрим бесконечный ряд: 1 все члены ряда – комплексные числа образуем ∑ первых n членов этого ряда: 2 Давая n значения 123 мы получим бесконечную последовательность комплексных чисел S1S2Snсоответствующего ряда 1 . Обратно зная последовательность чисел Sn легко написать соответствующий ей ряд: S1S2S1SnSn–1 Говорят что ряд 1 сходится если соответствующая ему последовательность чисел Sn сходится в этом случае суммой ряда 1 называют предел указанной...

Русский

2013-08-04

227.5 KB

10 чел.

Ряды.

Понятие сходящегося и расходящегося ряда.

Рассмотрим бесконечный ряд:

   (1)

все члены ряда – комплексные числа, образуем ∑ первых n членов этого ряда:

   (2)

Давая n значения 1,2,3…, мы получим бесконечную последовательность комплексных чисел S1,S2,…,Sn,…соответствующего ряда (1) . Обратно, зная последовательность чисел Sn, легко написать соответствующий ей ряд:

S1+(S2-S1)+…+(Sn-Sn–1)+…

Говорят, что ряд (1) сходится, если соответствующая ему последовательность чисел Sn сходится, в этом случае суммой ряда (1) называют предел указанной последовательности.

Следовательно, ряд (1) называют сходящимся, если существует

,

называемый суммой этого ряда.

Если последовательность чисел (2) не сходится, то ряд (1) называется расходящимся.В случае расходящегося ряда сумма Sn либо , либо не стремится ни к какому определенному пределу. В первом случае ряд называют собственно расходящимся, а во втором - колеблющимся. 

Теорема. Вопрос о сходимости или расходимости ряда (1) эквивалентен вопросу о сходимости или расходимости соответствующей последовательности комплексных чисел (2).

Доказательство. В самом деле:

Sn=1+q+q2+…+qn-1 =(1-qn)/(1-q)=1/(1-q)-qn/(1-q).

Т.к. ׀qn׀=׀q׀n ,то при ׀<1 число qn 0 при n,а в случае ׀q׀>1неограниченно возрастает, следовательно:

Sn=1/(1-q) при ׀<1, Sn= при ׀>1.

Ч.т.д.

Например: 1+q+q2+q3+…+qn+…

сходится при ׀q׀<1 и является собственно расходящимся при ׀>1.

Необходимый признак сходимости ряда.

Пусть ряд (1)сходится, т.е. последовательность Sn сходится, тогда

(Sn+1-Sn)=Un+1=0,

т.к. Sn=Sn+1=S (или по Коши).

Итак, во всяком сходящемся ряде общий его член стремится к нулю

при неограниченном возрастании его номера n:

Un=0                (3).

Равенство (3) является необходимым признаком сходимости ряда. Если он не выполняется, то ряд расходится.

Например: 1+q+q2+… расходится при ׀1, т.к. в этом случае его

общий член qn не стремится к нулю при n. Этот ряд является собственно расходящимся при ׀>1 и при q=1 ,а при ׀=1(q1) ряд будет колеблющимся, т.к. в этом случае Sn=(1-qn)/(1-q) (q1) не стремится к бесконечности при неограниченном возрастании n.

         Признак не является достаточным.

         Например: 1+1/2+1/3+…+1/n+… расходится, хотя (3) выполняется.

Понятие абсолютно сходящегося ряда.

Рассмотрим наряду с рядом

  (1)

новый ряд из модулей Uj

.  (1a)

Исследование сходимости ряда (1а) проще, чем исследование ряда (1). Так как сумма n первых n членов ряда (1а) не убывает с ростом n и, следовательно, либо остается ограниченной при любом  n, либо  при n. В первом случае последовательность неубывающих чисел n имеет единственный предел и ряд (1а) сходится, а во втором случае этот ряд расходится.

Итак, сходимость ряда с положительными членами характеризуется тем фактором, что суммы первых n его членов образуют ограниченную последовательность чисел.

Теорема 1. Из сходимости ряда (1а) вытекает сходимость ряда (1), т.е. если ряд (1а) сходится, то сходится и ряд (1).

Доказательство.

Sn+m -Sn=Un+m+Un+m+1+…+Un+1Un+1+Un+2+…+Un+m,т.е. Sn+m -Snn+m-n                         (2)

По условию теоремы ряд (1а) сходится, следовательно, в силу необходимости признака Коши, при сколько угодно малом ξ>0 найдется такое N=N(), что n+m-n<ξ, где m-произвольное целое положительное число. Из неравенства (2) следует:

Sn+m -Sn<,

причем последнее неравенство имеет место при любом ξ>0, N=N(), независимо от m0.В силу достаточности признака Коши следует сходимость ряда (1). Ч.т.д.

 Ряд (1) с комплексными числами называется абсолютно или безусловно сходящимся, если сходится ряд (1а), составленный из модулей его членов.

Итак, всякий абсолютно сходящийся ряд является сходящимся.

Обратное  неверно, т.е. существуют ряды сходящиеся, но не абсолютно. Такие ряды называются условно сходящимися.

Например: ряд 1-1/2+1/3-1/4+…сходится условно, а

                      ряд 1-1/4+1/9-1/16+…сходится абсолютно.

Действия над абсолютно сходящимся рядом подчиняются тем же законам, что и действия над комплексными суммами.

Теорема о двойных рядах.

         Из данного бесконечного ряда

  (1)

можно образовать бесконечное множество рядов разными способами таких, что каждый член Un первоначального ряда входит в один и только в один из новых рядов.

Например, получим из ряда (1) ряды:

U1+U2+U4+U7+U11+….

U3+U5+U8+U12+…

U6+U9+U13+…

U10+U14+…

U15+…

В общем случае такое разложение ряда (1) на бесконечное множество рядов обозначим в виде таблицы:

U1+U2+U3+…

                       U1+U2+U3+…                  (3)

U1+U2+U3+…

Теорема 2: Если ряд (1) абсолютно сходится и его сумма равна S и  каждый из рядов (3) обозначается через S1,S2,S3,…,то ряд

S1+S2+S3+…        (4)

абсолютно сходится и его сумма равна S.

Замечание. Указанное в теореме свойство верно для бесконечного ряда лишь при условии его абсолютной сходимости. Для условно сходящегося ряда, вообще говоря, нельзя утверждать то, что его часть сходится.

 Например: ряд

сходится, однако, ряды

и  расходятся.

Доказательство (теоремы).

Докажем сначала, что ряд является сходящимся. Действительно, его частичные суммы остаются меньше конечного числа

Следовательно, первый из рядов (3) абсолютно сходится. Аналогично доказывается, что и каждый их рядов (3) абсолютно сходится.

Покажем теперь, что ряд (4) абсолютно сходится.

Предварительно установим, что модуль суммы не больше суммы модулей слагаемых и в случае абсолютно сходящихся бесконечных рядов. Действительно, полагая

и , имеем

и тем более

при любом n, откуда

Сложим теперь все неравенства

………………………

,

получим:

.

Так как, последнее неравенство верно при любом m, то отсюда следует абсолютная сходимость ряда (4).

Остается показать, что сумма абсолютно сходящегося ряда (4) совпадает с суммой S первоначального ряда (1). Для этого оценим модуль разности

.

Так как, S есть сумма данного яда (1), а S1,S2,..,Smсуммы первых m рядов таблицы (3), то можно утверждать, что

,

где индексы суть номера всех тех членов ряда (1), которые не входят ни в один из m первых рядов таблицы (3). Обозначая через n произвольное натуральное число, выбираем m столь большим, чтобы все индексы  были больше n.

В этом случае, очевидно, имеем:

.

Так как ряд (1) абсолютно сходится, то, считая n достаточно большим, мы можем утверждать, что:

,

что и доказывает сходимость ряда (4) к сумме S. Ч.т.д

Сложение и вычитание рядов. Перестановки членов ряда.

Пусть даны два ряда с комплексными членами:

 (1)

 (5)

Складывая (вычитая) соответствующие члены этих рядов, мы образуем новый ряд:

,  (6)

называемый суммой (разностью) двух данных рядов.

 Если данные ряды сходятся и имеют соответствующие суммы и , то и ряд (6) сходящийся и имеет своей суммой .

 В самом деле, обозначая через и  суммы первых n членов рядов (1) и (5), имеем:

,

откуда следует:

Из последнего равенства  и вытекает справедливость нашего утверждения, так как   

является  суммой первых n  членов ряда (6).

Итак, всякие два сходящиеся ряда можно почленно складывать и вычитать. Операции сложения и вычитания распространяются следовательно, на класс всех (условно или безусловно) сходящихся бесконечных рядов.

Следствие. В абсолютно сходящемся ряде можно произвольно переставить его члены, не меняя суммы ряда.

 Доказательство. Действительно, переставляя члены ряда (1), получим новый ряд:

,    (7)

где  совокупность всех натуральных чисел, написанных в каком-либо порядке. Полагая , мы видим на основании T.2., что если ряд (1) абсолютно сходящийся, то абсолютно и новый ряд (7), причём, его сумма по-прежнему равна S.

В условно сходящихся рядах, вообще говоря, нельзя переставлять слагаемые без изменения суммы ряда.

Умножение рядов.

Пусть даны два ряда:

  (1)

  (5)

Образуем новый ряд:

, (8)

,

называемый произведением 2-х данных рядов.

Теорема 3. Если данные ряды (1) и (5) абсолютно сходящийся и имеют своими суммами соответственно и , то и ряд (8) также абсолютно сходится и имеет своей суммой число .

 Доказательство. Для доказательства рассмотрим попарные произведения всех членов рядов (1) и (5):

  (9)

и покажем, что ряд, членами которого являются числа (9), абсолютно сходится. Для этого достаточно показать, что  сумма вида

остается меньше постоянного числа. Обозначая через n наибольший номер входящих в рассматриваемую сумму членов рядов (1) и (5), легко увидеть, что она не более произведения

,

а следовательно, и подавно меньше , где

;

Итак, к ряду, членами которого служат числа (9) можно применить теорему 2, положив

,,….,

На основании этой теоремы ряд (8) абсолютно сходится.

Остается показать, что сумма ряда (8) равна . С этой целью перегруппируем члены (9), полагая

,  и т.д.

Ряды S1,S2… абсолютно сходятся на основании теоремы 2. Вынося в первом ряде  за скобку, получаем, что его сумма  равна . Аналогично и т.д. Наконец, ряд  или  есть абсолютно сходящийся, сумма которого равна .

В силу теоремы 2. эта сумма совпадает с суммой ряда (8). Ч.т.д.

Итак, основные операции над конечными суммами: перестановка порядка слагаемых и умножение таких сумм распространяется на бесконечные ряды при условии их абсолютной сходимости. Теорема 3 распространяется и на условно сходящиеся ряды, если a priori известно, что в результате их умножения получается сходящийся ряд.

PAGE  6


 

А также другие работы, которые могут Вас заинтересовать

27101. Нормализация данных в базе данных. Виды аномалий 40 KB
  Виды аномалий Нормализация таблиц базы данных это процесс организации данных в базе данных включающий создание таблиц и установление отношений между ними в соответствии с правилами которые обеспечивают защиту данных и делают базу данных более гибкой устраняя избыточность и несогласованные зависимости. Главная цель нормализации базы данных устранение избыточности и дублирования информации. В идеале при нормализации надо добиться чтобы любое значение хранилось в базе в одном экземпляре причем значение это не должно быть получено...
27102. Периферийные устройства персонального компьютера 33 KB
  Принтер print печатать – устройство для вывода на печать текстовой и графической информации. Плоттер графопостроитель – устройство для вывода на бумагу больших рисунков чертежей и другой графической информации. Манипулятор мышь mouse – устройство облегчающее ввод информации в компьютер. Дисковод CDROM – устройство для чтения информации записанной на лазерных компактдисках CD ROM – Compact Disk Read Only Memory что в переводе означает компактдиск с памятью только для чтения.
27103. Характеристика стека TCP/IP 18.93 KB
  Стек TCP IP получил своё название от основных протоколов TCP Transmission Control Protocol и IP Internet Protocol разработанных в 70е г.Kahn в работе €œA protocol for packet network interconnection€ IEEE Transaction on Communications Vol. HTTP Hyper Text Transfer Protocol – протокол передачи гипертекстовых документов используется для реализации приложений WWW Word Wide Web всемирной паутины. FTP File Transfer Protocol – протокол передачи и приёма файлов.
27104. Организация и протоколы электронной почты. E-mail 644.2 KB
  Технологии ISDN ATM Ethernet. Модель стека TCP IP Уровни OSI Протоколы стека TCP IP Уровни стека TCP IP Прикладной Application HTTP FTP Telnet Прикладной Application Представительный Presentation Сеансовый Session Транспортный Transport TCP UDP Транспортный Transport Сетевой Network IP ARP ICMP RIP OSPF Сетевой Network Канальный Data Link ТехнологииСетевые интерфейсыEthernet ATM Физический Physical Физический Physical Приведём краткую характеристику основных протоколов стека. Технология чаще всего...
27105. Архитектура вычислительной машины (компьютера) 66.34 KB
  Интерфейсная система обеспечивает три направления передачи информации: между МП и оперативной памятью; между МП и портами ввода вывода внешних устройств; между оперативной памятью и портами ввода вывода внешних устройств. Память – устройство для хранения информации в виде данных и программ. Память делится прежде всего на внутреннюю расположенную на системной плате и внешнюю размещенную на разнообразных внешних носителях информации. Выделяют: Накопители на магнитной ленте Диски Диски относятся к носителям информации с прямым...
27106. Беспроводные технологии (Wi-Fi, Bluetooth, WiMAX) 183 KB
  В настоящее время существует множество беспроводных технологий наиболее часто известных пользователям по их маркетинговым названиям таким как WiFi WiMAX Bluetooth.4 GHz работает множество устройств таких как устройства поддерживающие Bluetooth и др и даже микроволновые печи что ухудшает электромагнитную совместимость.
27107. Операти́вная па́мять 71 KB
  Память Оперативка энергозависимая часть системы компьютерной памяти в которой временно хранятся данные и команды необходимые процессору для выполнения им операции. Обязательным условием является адресуемость каждое машинное словоимеет индивидуальный адрес памяти. Содержащиеся в оперативной памяти данные доступны только тогда когда на модули памяти подаётся напряжение то есть компьютер включён. Пропадание на модулях памяти питания даже кратковременное приводит к искажению либо полному уничтожению данных в ОЗУ.
27108. Классификация и принципы работы энергонезависимой памяти компьютера 98.71 KB
  Постоянное запоминающее устройство ПЗУ энергонезависимая память используется для хранения массива неизменяемых данных. Массив данных совмещён с устройством выборки считывающим устройством в этом случае массив данных часто в разговоре называется прошивка: микросхема ПЗУ; Один из внутренних ресурсов однокристальной микроЭВМ микроконтроллера как правило FlashROM. По разновидностям микросхем ПЗУ: По технологии изготовления кристалла: ROM англ. readonly memory постоянное запоминающее устройство масочное ПЗУ...
27109. Режимы работы процессора 124.5 KB
  Первое поколение Pentium носило кодовое имя P5 а также i80501 напряжение питания было 5 В расположение выводов – матрица тактовые частоты – 60 и 66 МГц технология изготовления – 080микронная частота шины равна частоте ядра. Тактовая частота ядра – 75200 МГц шины – 50 60 66 МГц. Внутренняя тактовая частота – 166233 МГц частота шины – 66 МГц. Тактовые частоты от 133 до 266 МГц с частотой шины 6066 МГц.