22366

Понятие сходящегося и расходящегося ряда

Лекция

Математика и математический анализ

Понятие сходящегося и расходящегося ряда. Рассмотрим бесконечный ряд: 1 все члены ряда комплексные числа образуем ∑ первых n членов этого ряда: 2 Давая n значения 123 мы получим бесконечную последовательность комплексных чисел S1S2Snсоответствующего ряда 1 . Обратно зная последовательность чисел Sn легко написать соответствующий ей ряд: S1S2S1SnSn1 Говорят что ряд 1 сходится если соответствующая ему последовательность чисел Sn сходится в этом случае суммой ряда 1 называют предел указанной...

Русский

2013-08-04

227.5 KB

10 чел.

Ряды.

Понятие сходящегося и расходящегося ряда.

Рассмотрим бесконечный ряд:

   (1)

все члены ряда – комплексные числа, образуем ∑ первых n членов этого ряда:

   (2)

Давая n значения 1,2,3…, мы получим бесконечную последовательность комплексных чисел S1,S2,…,Sn,…соответствующего ряда (1) . Обратно, зная последовательность чисел Sn, легко написать соответствующий ей ряд:

S1+(S2-S1)+…+(Sn-Sn–1)+…

Говорят, что ряд (1) сходится, если соответствующая ему последовательность чисел Sn сходится, в этом случае суммой ряда (1) называют предел указанной последовательности.

Следовательно, ряд (1) называют сходящимся, если существует

,

называемый суммой этого ряда.

Если последовательность чисел (2) не сходится, то ряд (1) называется расходящимся.В случае расходящегося ряда сумма Sn либо , либо не стремится ни к какому определенному пределу. В первом случае ряд называют собственно расходящимся, а во втором - колеблющимся. 

Теорема. Вопрос о сходимости или расходимости ряда (1) эквивалентен вопросу о сходимости или расходимости соответствующей последовательности комплексных чисел (2).

Доказательство. В самом деле:

Sn=1+q+q2+…+qn-1 =(1-qn)/(1-q)=1/(1-q)-qn/(1-q).

Т.к. ׀qn׀=׀q׀n ,то при ׀<1 число qn 0 при n,а в случае ׀q׀>1неограниченно возрастает, следовательно:

Sn=1/(1-q) при ׀<1, Sn= при ׀>1.

Ч.т.д.

Например: 1+q+q2+q3+…+qn+…

сходится при ׀q׀<1 и является собственно расходящимся при ׀>1.

Необходимый признак сходимости ряда.

Пусть ряд (1)сходится, т.е. последовательность Sn сходится, тогда

(Sn+1-Sn)=Un+1=0,

т.к. Sn=Sn+1=S (или по Коши).

Итак, во всяком сходящемся ряде общий его член стремится к нулю

при неограниченном возрастании его номера n:

Un=0                (3).

Равенство (3) является необходимым признаком сходимости ряда. Если он не выполняется, то ряд расходится.

Например: 1+q+q2+… расходится при ׀1, т.к. в этом случае его

общий член qn не стремится к нулю при n. Этот ряд является собственно расходящимся при ׀>1 и при q=1 ,а при ׀=1(q1) ряд будет колеблющимся, т.к. в этом случае Sn=(1-qn)/(1-q) (q1) не стремится к бесконечности при неограниченном возрастании n.

         Признак не является достаточным.

         Например: 1+1/2+1/3+…+1/n+… расходится, хотя (3) выполняется.

Понятие абсолютно сходящегося ряда.

Рассмотрим наряду с рядом

  (1)

новый ряд из модулей Uj

.  (1a)

Исследование сходимости ряда (1а) проще, чем исследование ряда (1). Так как сумма n первых n членов ряда (1а) не убывает с ростом n и, следовательно, либо остается ограниченной при любом  n, либо  при n. В первом случае последовательность неубывающих чисел n имеет единственный предел и ряд (1а) сходится, а во втором случае этот ряд расходится.

Итак, сходимость ряда с положительными членами характеризуется тем фактором, что суммы первых n его членов образуют ограниченную последовательность чисел.

Теорема 1. Из сходимости ряда (1а) вытекает сходимость ряда (1), т.е. если ряд (1а) сходится, то сходится и ряд (1).

Доказательство.

Sn+m -Sn=Un+m+Un+m+1+…+Un+1Un+1+Un+2+…+Un+m,т.е. Sn+m -Snn+m-n                         (2)

По условию теоремы ряд (1а) сходится, следовательно, в силу необходимости признака Коши, при сколько угодно малом ξ>0 найдется такое N=N(), что n+m-n<ξ, где m-произвольное целое положительное число. Из неравенства (2) следует:

Sn+m -Sn<,

причем последнее неравенство имеет место при любом ξ>0, N=N(), независимо от m0.В силу достаточности признака Коши следует сходимость ряда (1). Ч.т.д.

 Ряд (1) с комплексными числами называется абсолютно или безусловно сходящимся, если сходится ряд (1а), составленный из модулей его членов.

Итак, всякий абсолютно сходящийся ряд является сходящимся.

Обратное  неверно, т.е. существуют ряды сходящиеся, но не абсолютно. Такие ряды называются условно сходящимися.

Например: ряд 1-1/2+1/3-1/4+…сходится условно, а

                      ряд 1-1/4+1/9-1/16+…сходится абсолютно.

Действия над абсолютно сходящимся рядом подчиняются тем же законам, что и действия над комплексными суммами.

Теорема о двойных рядах.

         Из данного бесконечного ряда

  (1)

можно образовать бесконечное множество рядов разными способами таких, что каждый член Un первоначального ряда входит в один и только в один из новых рядов.

Например, получим из ряда (1) ряды:

U1+U2+U4+U7+U11+….

U3+U5+U8+U12+…

U6+U9+U13+…

U10+U14+…

U15+…

В общем случае такое разложение ряда (1) на бесконечное множество рядов обозначим в виде таблицы:

U1+U2+U3+…

                       U1+U2+U3+…                  (3)

U1+U2+U3+…

Теорема 2: Если ряд (1) абсолютно сходится и его сумма равна S и  каждый из рядов (3) обозначается через S1,S2,S3,…,то ряд

S1+S2+S3+…        (4)

абсолютно сходится и его сумма равна S.

Замечание. Указанное в теореме свойство верно для бесконечного ряда лишь при условии его абсолютной сходимости. Для условно сходящегося ряда, вообще говоря, нельзя утверждать то, что его часть сходится.

 Например: ряд

сходится, однако, ряды

и  расходятся.

Доказательство (теоремы).

Докажем сначала, что ряд является сходящимся. Действительно, его частичные суммы остаются меньше конечного числа

Следовательно, первый из рядов (3) абсолютно сходится. Аналогично доказывается, что и каждый их рядов (3) абсолютно сходится.

Покажем теперь, что ряд (4) абсолютно сходится.

Предварительно установим, что модуль суммы не больше суммы модулей слагаемых и в случае абсолютно сходящихся бесконечных рядов. Действительно, полагая

и , имеем

и тем более

при любом n, откуда

Сложим теперь все неравенства

………………………

,

получим:

.

Так как, последнее неравенство верно при любом m, то отсюда следует абсолютная сходимость ряда (4).

Остается показать, что сумма абсолютно сходящегося ряда (4) совпадает с суммой S первоначального ряда (1). Для этого оценим модуль разности

.

Так как, S есть сумма данного яда (1), а S1,S2,..,Smсуммы первых m рядов таблицы (3), то можно утверждать, что

,

где индексы суть номера всех тех членов ряда (1), которые не входят ни в один из m первых рядов таблицы (3). Обозначая через n произвольное натуральное число, выбираем m столь большим, чтобы все индексы  были больше n.

В этом случае, очевидно, имеем:

.

Так как ряд (1) абсолютно сходится, то, считая n достаточно большим, мы можем утверждать, что:

,

что и доказывает сходимость ряда (4) к сумме S. Ч.т.д

Сложение и вычитание рядов. Перестановки членов ряда.

Пусть даны два ряда с комплексными членами:

 (1)

 (5)

Складывая (вычитая) соответствующие члены этих рядов, мы образуем новый ряд:

,  (6)

называемый суммой (разностью) двух данных рядов.

 Если данные ряды сходятся и имеют соответствующие суммы и , то и ряд (6) сходящийся и имеет своей суммой .

 В самом деле, обозначая через и  суммы первых n членов рядов (1) и (5), имеем:

,

откуда следует:

Из последнего равенства  и вытекает справедливость нашего утверждения, так как   

является  суммой первых n  членов ряда (6).

Итак, всякие два сходящиеся ряда можно почленно складывать и вычитать. Операции сложения и вычитания распространяются следовательно, на класс всех (условно или безусловно) сходящихся бесконечных рядов.

Следствие. В абсолютно сходящемся ряде можно произвольно переставить его члены, не меняя суммы ряда.

 Доказательство. Действительно, переставляя члены ряда (1), получим новый ряд:

,    (7)

где  совокупность всех натуральных чисел, написанных в каком-либо порядке. Полагая , мы видим на основании T.2., что если ряд (1) абсолютно сходящийся, то абсолютно и новый ряд (7), причём, его сумма по-прежнему равна S.

В условно сходящихся рядах, вообще говоря, нельзя переставлять слагаемые без изменения суммы ряда.

Умножение рядов.

Пусть даны два ряда:

  (1)

  (5)

Образуем новый ряд:

, (8)

,

называемый произведением 2-х данных рядов.

Теорема 3. Если данные ряды (1) и (5) абсолютно сходящийся и имеют своими суммами соответственно и , то и ряд (8) также абсолютно сходится и имеет своей суммой число .

 Доказательство. Для доказательства рассмотрим попарные произведения всех членов рядов (1) и (5):

  (9)

и покажем, что ряд, членами которого являются числа (9), абсолютно сходится. Для этого достаточно показать, что  сумма вида

остается меньше постоянного числа. Обозначая через n наибольший номер входящих в рассматриваемую сумму членов рядов (1) и (5), легко увидеть, что она не более произведения

,

а следовательно, и подавно меньше , где

;

Итак, к ряду, членами которого служат числа (9) можно применить теорему 2, положив

,,….,

На основании этой теоремы ряд (8) абсолютно сходится.

Остается показать, что сумма ряда (8) равна . С этой целью перегруппируем члены (9), полагая

,  и т.д.

Ряды S1,S2… абсолютно сходятся на основании теоремы 2. Вынося в первом ряде  за скобку, получаем, что его сумма  равна . Аналогично и т.д. Наконец, ряд  или  есть абсолютно сходящийся, сумма которого равна .

В силу теоремы 2. эта сумма совпадает с суммой ряда (8). Ч.т.д.

Итак, основные операции над конечными суммами: перестановка порядка слагаемых и умножение таких сумм распространяется на бесконечные ряды при условии их абсолютной сходимости. Теорема 3 распространяется и на условно сходящиеся ряды, если a priori известно, что в результате их умножения получается сходящийся ряд.

PAGE  6


 

А также другие работы, которые могут Вас заинтересовать

49073. Использование аппарата нейронных сетей для оценки риска банкротства предприятия 238 KB
  Нейронные сети и их преимущества для решения задачи оценки рисков Пример разработки модели нейронной сети для анализа риска наступления банкротства предприятия Модель нейронной сети для предсказания финансовой несостоятельности организации. Нейронные сети и их преимущества для решения задачи оценки рисков На практике при анализе рисков часто встречаются задачи связанные с наблюдением случайных величин. При этом сама зависимость будет выведена...
49074. Применение нейронных сетей для принятия решений 288.5 KB
  Существует множество областей применения искусственного интеллекта: принятие решений доказательства теорем игры творчество распознавание образов обработка данных на естественном языке обучающиеся сети нейросети и т. Мой выбор обусловлен стремлением узнать эффективно ли использовать нейросети при принятии решений об освобождении от оплаты за обучение учащихся детских школ искусств. Цель данной курсовой работы заключается в том чтобы показать...
49075. Крупные детали (коленчатые валы, муфты, промежуточные валы и др. детали должны иметь повышенную твёрдость 260-300 НВ) 242 KB
  Конструкционные стали Улучшаемые стали. Конструкционные стали применяемые для изготовления валов Термическая обработка сталей. Выбор термической обработки стали марки 40ХНМА.
49076. Расчет термической обработки стали марки 5ХНМ 275.5 KB
  Если обрабатывается мягкий материал (дерево, пластмассы, цветные металлы) или при обработке стали и чугуна применяются малые скорости резания и стружка имеет малое сечение, то в единицу времени на процесс резания затрачивается мало энергии. Если обработка происходит при больших скоростях резания, обрабатываются твердые металлы и стружка имеет большое сечение
49077. ИССЛЕДОВАНИЕ ОРГАНА КОНТРОЛЯ ПОГАСАНИЯ ДУГИ 136.5 KB
  Исследуемая модель линии При угле передачи 0 и переходном сопротивлении Rпер=30 Ом напряжение на зажимах реактора относительно земли в фазе А где первый график модуль напряжения а второй угол. Используя значения напряжения после t=0.02 с изменяя место короткого замыкания а также значение угла передачи можно получить зависимости: Рисунок 2 Зависимость напряжения на реакторе от места повреждения при угле передачи 30 Рисунок 3 Зависимость напряжения на реакторе от места повреждения при...
49080. ДАТЧИК ВЛАЖНОСТИ 248.5 KB
  Описание физической величины Описание и выбор метода измерения влажности Метод высушивания Дистилляционный метод Экстракционные методы Химический метод Метод СВЧ-влагометрии Нейтронный метод Инфракрасные влагомеры Кондуктометрические датчики Выбор метода Выбор и описание датчика Влагомер ВП4 Влагомер для порошкообразных материалов Датчик влажности для формовочной смеси Датчик влажности для зерна Автоматическая...
49081. Разработка рациональной системы применения удобрений в конкретных почвенно-климатических условиях хозяйства 1.06 MB
  Производственные показатели для составления системы применения удобрений Выход навоза заготовка хранение и технология внесения органических удобрений Составление системы применения удобрений в расчете на планируемый урожай при освоении севооборота Составление системы применения удобрений на планируемый урожай в освоенном севообороте