22367

Функции комплексной переменной

Лекция

Математика и математический анализ

Областью на комплексной плоскости называют множество D точек обладающее следующими свойствами: Вместе с каждой точкой из D этому множеству принадлежит и достаточно малый круг с центром в этой точке свойство открытости. Простыми примерами областей могут служить окрестности точек на комплексной плоскости. Говорят что на множестве M точек плоскости z задана функция w=fz 1 если указан закон по которому каждой точке zM...

Русский

2013-08-04

202.5 KB

8 чел.

Функции комплексной переменной.

Геометрические понятия.

  1.  Областью на комплексной плоскости называют множество D точек, обладающее следующими свойствами:
  2.  Вместе с каждой точкой из D этому множеству принадлежит и достаточно малый круг с центром в этой точке (свойство открытости).
  3.  Любые две точки D можно соединить ломаной (непрерывной кривой), состоящей из точек D (свойство связности).
  4.  Простыми примерами областей могут служить окрестности точек на комплексной плоскости. Под -окрестностью точки a понимают открытый круг радиуса с центром в этой точке, т.е. совокупность точек z, удовлетворяющих неравенству: za<.
  5.  Граничной точкой области D называют точку, которая сама не принадлежит D, но в любой окрестности которой лежат точки этой области.
  6.  Совокупность граничных точек области D называют границей этой области D.
  7.  

Область D с присоединенной к ней границей (обозначается ) называют

замкнутой областью (или компактом).

Будем предполагать, что граница области состоит из конечного числа замкнутых линий, разрезов и точек, как например, показано на рисунке, где граница области состоит из трех замкнутых линий 0,1,2, двух разрезов 1,2 и одной точки . Линии и разрезы, входящие в состав границы, всегда будем предполагать кусочно-гладкими, т.е. состоящими из конечного числа гладких (т.е. с непрерывно изменяющейся касательной) дуг. В случае ограниченной области (т.е. целиком содержащей-

     Рис. 1                      ся внутри некоторого круга z<R) число связных частей,

на которые разбивается ее граница, называется порядком связности этой области (на рис. 1 пятисвязная область, т.к. 0+1 образуют одну связную часть границы).

  1.  В частности, если граница области D связна (состоит из одной связной части), то D называется односвязной областью.
  2.  Пусть D – односвязная область, а - ее граница. Положительным направлением обхода считается такое, при котором область остается все время слева.
  3.  Теорема (Жордана). Простая замкнутая непрерывная кривая разбивает расширенную комплексную плоскость на две односвязные области.

Функции комплексной переменной.

  1.  Говорят, что на множестве M точек плоскости z задана функция

                                                             w=f(z),                                                     (1)

если указан закон, по которому каждой точке zM ставится соответствие определенная точка или совокупность точек w. В первом случае функция f(z) называется однозначной, во втором – многозначной. Множество M называется множеством определения функции f(z), а совокупность N всех значений w, которые f(z) принимает на Mмножеством ее изменения.

  1.  Если положить z=x+iy, а w=u+iv, то задание функции комплексной переменной w=f(z) будет равносильным заданию двух функций двух действительных переменных:

                                                    u=u(x,y), v=v(x,y).                                              (2)

  1.  Пусть точки z принадлежат одной комплексной плоскости, а значения (точки) w – другой. Тогда функцию комплексной переменной можно геометрически представить как некоторое отображение множества М плоскости z на множество N плоскости w (см. рис. 2).

Если функция w=f(z) однозначна на множестве М и при этом двум различным точкам М всегда соответствуют различные точки N, то такое отображение называется взаимно однозначным или однолистным в М.

4. Пусть дана функция w=f(z), осуществляющая отображение множества М на множество N. Функция z=(w), ставящая в соответствие каждой

точке w из N совокупность всех тех точек z,

                    Рис. 2                    которые функцией w=f(z) отображаются в точку  

w, называется обратной к функции w=f(z) (см.рис. 2). Ясно, что отображение w=f(z) будет взаимнооднозначным тогда и только тогда, когда обе функции f и однозначны.

  1.  Пусть функция w=f(z) отображает множество М на N, а – множество N на P. Функция

                                                     ,                                               (3)

отображающая М на P, называется сложной функцией, составленной из f и g, а соответствующее отображение hсуперпозицией отображений f и g. Если, в частности, отображение w=f(z) взаимно однозначно и функция z=(w) – обратная к  f, то

                                                          [f(z)]=z.                                                        (4)

Пример 1. 

Линейная функция определяется во всей плоскости z соотношением

                                                  w=az+b,                                                                 (5)

a0 и b – произвольные комплексные постоянные. Положим k=a, =arg(a), т.е. a=k(cos+isin)=kei и представим функция (5) как сложную функцию, составленную из функций: a) z1=zei, б) z2=kz1, в) w=z2+b. В соответствии с геометрическим смыслом умножения отображения а) и б) сводятся соответственно к повороту плоскости на угол и подобному преобразованию плоскости z1 с коэффициентом подобия k. Отображение в) геометрически означает сдвиг всей плоскости z2 на постоянный вектор b.

Линейное отображение (5) представляет собой суперпозицию описанных отображений (см. рис. 3). Отсюда следует, что отображение (5) взаимно однозначно во всей плоскости и что оно преобразует прямые в прямые (причем углы между прямыми сохраняются), а окружности в окружности.

Пример 2. Функция

      w=f(z)=1/z.                                                     (6)

                Рис. 3                       Эта функция определена на полной (расширенной)

комплексной плоскости, причем , . Функция f(z) является однозначной и однолистной функцией z, отображающей полную плоскость z на полную плоскость w. (Легко установить, что функция f(z) является непрерыв-ной на полной комплексной плоскости за исключением точки z=0). В показательной форме имеем:

w=rei=(1/)e-i, (z=ei), т.е. w=1/z, arg(w)= –arg(z),

т.е. отображение, осуществляемое (6) является совокупностью (суперпозицией) двух отображений: =(z), где =z, arg()= –arg(z) и w=w(), где w=1/, arg(w)=arg().

Первое отображение имеет смысл зеркаль-ного отражения относительно действительной оси, когда точка z переходит в , а второе – инверсии, т.е. преобразования обратных радиу-сов, при котором каждой точке внутри (вне) кру-

       Рис. 4                     га ставится в соответствие точка вне (внутри) кру-га, лежащая на луче, проведенном из центра круга в данную точку, причем произведение расстояний от этих точек до центра круга равно квадрату радиуса круга. При этом точки плоскости z, лежащие вне единичного круга переходят в точки, лежащие внутри единичного круга плоскости w, и наоборот.

Пример 3. Функция

w=f(z)=z2

является однозначной функцией комплексной переменной z, определенной на полной комплексной плоскости z. Если z=ei, то w=rei=2ei2. Таким образом, точки плоскости z, лежащие на луче, составляющем угол с положительным направлением действительной оси, переходят в точки плоскости w, лежащие на луче, составляющем угол 2 с положительным направлением действительной оси. Поэтому точкам z и z, модули которых равны, а аргументы различаются на , соответствует одно и то же значение w, т.к. ei2=1. Тем самым обратная функция оказывается многозначной.

Таким образом, при отображении w=z2 верхняя полуплоскость вместе с действительной осью переходит в полную плоскость w. Положим для определенности, что в верхней полуплоскости аргумент z заключен в пределах 0<<. Тогда различным точкам области 0<< соответствуют различные значения w. Такая область изменения независимой переменной, различным точкам которой соответствуют различные значения функции, называется областью однолистности функции. В рассматриваемом случае границы области однолистности - лучи =0 и = - переходят в одну и ту же прямую –  положительную действительную полуось плоскости w. Функция w=z2 отображает и нижнюю полуплоскость z вместе с действительной осью на полную плоскость w. Тем самым обратная функция: , определенная на полной плоскости w, уже не является однозначной – одной и той же точке плоскости w соответствует 2 различных точки плоскости z: одна – в верхней, другая – в нижней полуплоскости.

Рассмотрим функцию . В соответствии с правилами извлечения корня из комплексного числа для каждого значения w=rei мы получим 2 различных значения функции z(w): zk=r1/2ei/2(+2k) (k=0,1), причем arg(z1) –arg(z0)=. Рассмотрим на плоскости w некоторую замкнутую кривую C без самопересечений. Зафиксируем на ней точку w0, имеющую arg(w0)=0, найдем z0(w0), z1(w0) и будем следить за изменением функций z0(w), z1(w) при непрерывном движении точки w по кривой C. При этом возможны два различных случая.

I. Kривая С не содержит точку w=0. Тогда после обхода С аргумент точки w вернется к первоначальному значению arg(w0)=0. Следовательно, и значения функций z0(w), z1(w) в точке w=w0 после обхода С равны их первоначальным значениям, т.е. на кривой С в этом случае определены две различные однозначные функции комплексной переменной w: z0=r1/2ei/2, z1= r1/2ei/2(+2), ( изменяется непрерывно на С, начиная от значения 0=arg(w0)). Очевидно, если область D плоскости w обладает тем свойством, что замкнутая кривая этой области не содержит точки w=0, то в D определены две различные однозначные непрерывные функции z0(w), z1(w), называемые независимыми ветвями многозначной функции. .

II. Кривая С содержит внутри точку w=0, тогда после обхода С в положительном направлении значение arg(w) уже не вернется к первоначальному значению 0, а изменится на 2. Поэтому и значения функций z0(w), z1(w) в точке w0 в результате их непрерывного изменения после обхода С станут равными   , т.е. функция  перейдет в  и наоборот.

Если для точки z0 можно указать такую -окрестность, что при однократном обходе т. z0 по любому замкнутому контуру, целиком лежащему в этой -окрестности, одна ветвь многозначной функции переходит в другую, то точка z0 называется точкой ветвления данной многозначной функции. В окрестности точки ветвления отдельные ветви многозначной функции уже нельзя рассматривать как различные однозначные функции, поскольку при обходе точки ветвления их значения меняются. В рассмотренном случае w=0 является точкой ветвления.

Обход окружности w=R сколь угодно большого радиуса соответствует обходу на плоскости =1/w точки =0 по окружности ==1/R. Поэтому при обходе точки w= так же, как при обходе т. w=0, одна ветвь функции  переходит в другую таким образом, точка w= также является точкой ветвления функции . Областью D, в которой определены однозначные ветви функции, является любая область плоскости w, в которой невозможен обход по замкнутому контуру точек ветвления w=0, w=. Такой областью является, например, вся комплексная плоскость w с разрезом вдоль положительной части действительной оси. При этом берега разреза являются границей данной области.

Если считать, что аргумент точек w для первой ветви изменяется в пределах 0<arg(w)<2, а для второй - в пределах 2<arg(w)<4, то первая ветвь функции  производит отображение плоскости w с разрезом на верхнюю полуплоскость z, а вторая ветвь отображает ту же область на нижнюю полуплоскость z.

Аналогично легко показать, что функция w=zn (n>0 – целое число) производит отображение любого сектора 2k/n<arg(z)<2(k+1)/n (k=0,1,…,n-1) плоскости z на полную плоскость w, разрезанную по положительной части действительной оси. Тем самым эти сектора представляют собой области однолистности данной функции.

Обратная функция  является многозначной, а точки w=0 и w= являются ее точкам ветвления.

5


 

А также другие работы, которые могут Вас заинтересовать

28549. Режим CBC 39 KB
  Дешифрование в режиме СВС Для получения первого блока зашифрованного сообщения используется инициализационный вектор IV для которого выполняется операция XOR с первым блоком незашифрованного сообщения. В режиме CBC при зашифровании каждая итерация алгоритма зависит от результата предыдущей итерации поэтому зашифрование сообщения не поддаётся расспараллеливанию. Однако расшифрование когда весь шифротекст уже получен можно выполнять параллельно и независимо для всех блоков сообщения см. Это дает значительный выигрыш во времени при...
28550. Режим CFB 66.5 KB
  Как и в режиме CBC здесь используется операция XOR для предыдущего блока зашифрованного текста и следующего блока незашифрованного текста. Таким образом любой блок зашифрованного текста является функцией от всего предыдущего незашифрованного текста. Для левых J битов выхода алгоритма выполняется операция XOR с первыми J битами незашифрованного текста Р1 для получения первого блока зашифрованного текста С1. При дешифровании используется аналогичная схема за исключением того что для блока получаемого зашифрованного текста выполняется...
28551. Режим шифрования с обратной связью по выходу (OFB) 52.55 KB
  Разница заключается в том что выход алгоритма в режиме OFB подается обратно в регистр тогда как в режиме CFB в регистр подается результат применения операции XOR к незашифрованному блоку и результату алгоритма см. Шифрование в режиме OFB Основное преимущество режима OFB состоит в том что если при передаче произошла ошибка то она не распространяется на следующие зашифрованные блоки и тем самым сохраняется возможность дешифрования последующих блоков. Дешифрование в режиме OFB Недостаток режима OFB заключается в том что он более уязвим к...
28552. Симметричные методы шифрования DES 63.46 KB
  Функция перестановки одна и та же для каждого раунда но подключи Ki для каждого раунда получаются разные вследствие повторяющегося сдвига битов ключа. Последовательность преобразований отдельного раунда Теперь рассмотрим последовательность преобразований используемую на каждом раунде. Создание подключей Ключ для отдельного раунда Ki состоит из 48 битов. На каждом раунде Ci и Di независимо циклически сдвигаются влево на 1 или 2 бита в зависимости от номера раунда.
28553. Примеры современных шифров проблема последнего блока DES 26.44 KB
  Альтернативой DES можно считать тройной DES IDEA а также алгоритм Rijndael принятый в качестве нового стандарта на алгоритмы симметричного шифрования. Также без ответа пока остается вопрос возможен ли криптоанализ с использованием существующих характеристик алгоритма DES. Алгоритм тройной DES В настоящее время основным недостатком DES считается маленькая длина ключа поэтому уже давно начали разрабатываться различные альтернативы этому алгоритму шифрования.
28554. Распределение ключей. Использование базовых ключей 13.15 KB
  Он заключается в доставке абоненту сети связи не полного комплекта ключей для связи со всеми другими абонентами а некоторой универсальной заготовки уникальной для каждого абонента по которой он может вычислить необходимый ему ключ. Пусть в сети связи действуют N абонентов занумеруем их от 0 до N1 и поставим каждому абоненту уникальный открытый идентификатор Yi из некоторого множества Y открытый в смысле общеизвестный. Генерация ключей для абонентов сети связи заключается в выработке N секретных ключей Xi из некоторого множества X....
28555. Использование маркантов или производных ключей 15.1 KB
  Заключается в использовании для шифрования не непосредственно ключей хранимых у абонентов а некоторых производных ключей из них получаемых. Заключается в использовании вместо ключа K двоичного вектора S полученного побитным суммированием K и случайного двоичного вектора M называемого маркантом при этом маркант передается в открытом виде отправителем получателю. Действительно использование одного и того же ключа но разных маркантов не снижает стойкости шифра. Однако этот метод обладает одним недостатком восстановление одного...
28557. Несимметричные системы шифрования и их построение 23.7 KB
  Эти системы характеризуются тем что для шифрования и для расшифрования используются разные ключи связанные между собой некоторой зависимостью. Один из ключей например ключ шифрования может быть сделан общедоступным и в этом случае проблема получения общего секретного ключа для связи отпадает. Поскольку в большинстве случаев один ключ из пары делается общедоступным такие системы получили также название криптосистем с открытым ключом. Первый ключ не является секретным и может быть опубликован для использования всеми пользователями...