22367

Функции комплексной переменной

Лекция

Математика и математический анализ

Областью на комплексной плоскости называют множество D точек обладающее следующими свойствами: Вместе с каждой точкой из D этому множеству принадлежит и достаточно малый круг с центром в этой точке свойство открытости. Простыми примерами областей могут служить окрестности точек на комплексной плоскости. Говорят что на множестве M точек плоскости z задана функция w=fz 1 если указан закон по которому каждой точке zM...

Русский

2013-08-04

202.5 KB

8 чел.

Функции комплексной переменной.

Геометрические понятия.

  1.  Областью на комплексной плоскости называют множество D точек, обладающее следующими свойствами:
  2.  Вместе с каждой точкой из D этому множеству принадлежит и достаточно малый круг с центром в этой точке (свойство открытости).
  3.  Любые две точки D можно соединить ломаной (непрерывной кривой), состоящей из точек D (свойство связности).
  4.  Простыми примерами областей могут служить окрестности точек на комплексной плоскости. Под -окрестностью точки a понимают открытый круг радиуса с центром в этой точке, т.е. совокупность точек z, удовлетворяющих неравенству: za<.
  5.  Граничной точкой области D называют точку, которая сама не принадлежит D, но в любой окрестности которой лежат точки этой области.
  6.  Совокупность граничных точек области D называют границей этой области D.
  7.  

Область D с присоединенной к ней границей (обозначается ) называют

замкнутой областью (или компактом).

Будем предполагать, что граница области состоит из конечного числа замкнутых линий, разрезов и точек, как например, показано на рисунке, где граница области состоит из трех замкнутых линий 0,1,2, двух разрезов 1,2 и одной точки . Линии и разрезы, входящие в состав границы, всегда будем предполагать кусочно-гладкими, т.е. состоящими из конечного числа гладких (т.е. с непрерывно изменяющейся касательной) дуг. В случае ограниченной области (т.е. целиком содержащей-

     Рис. 1                      ся внутри некоторого круга z<R) число связных частей,

на которые разбивается ее граница, называется порядком связности этой области (на рис. 1 пятисвязная область, т.к. 0+1 образуют одну связную часть границы).

  1.  В частности, если граница области D связна (состоит из одной связной части), то D называется односвязной областью.
  2.  Пусть D – односвязная область, а - ее граница. Положительным направлением обхода считается такое, при котором область остается все время слева.
  3.  Теорема (Жордана). Простая замкнутая непрерывная кривая разбивает расширенную комплексную плоскость на две односвязные области.

Функции комплексной переменной.

  1.  Говорят, что на множестве M точек плоскости z задана функция

                                                             w=f(z),                                                     (1)

если указан закон, по которому каждой точке zM ставится соответствие определенная точка или совокупность точек w. В первом случае функция f(z) называется однозначной, во втором – многозначной. Множество M называется множеством определения функции f(z), а совокупность N всех значений w, которые f(z) принимает на Mмножеством ее изменения.

  1.  Если положить z=x+iy, а w=u+iv, то задание функции комплексной переменной w=f(z) будет равносильным заданию двух функций двух действительных переменных:

                                                    u=u(x,y), v=v(x,y).                                              (2)

  1.  Пусть точки z принадлежат одной комплексной плоскости, а значения (точки) w – другой. Тогда функцию комплексной переменной можно геометрически представить как некоторое отображение множества М плоскости z на множество N плоскости w (см. рис. 2).

Если функция w=f(z) однозначна на множестве М и при этом двум различным точкам М всегда соответствуют различные точки N, то такое отображение называется взаимно однозначным или однолистным в М.

4. Пусть дана функция w=f(z), осуществляющая отображение множества М на множество N. Функция z=(w), ставящая в соответствие каждой

точке w из N совокупность всех тех точек z,

                    Рис. 2                    которые функцией w=f(z) отображаются в точку  

w, называется обратной к функции w=f(z) (см.рис. 2). Ясно, что отображение w=f(z) будет взаимнооднозначным тогда и только тогда, когда обе функции f и однозначны.

  1.  Пусть функция w=f(z) отображает множество М на N, а – множество N на P. Функция

                                                     ,                                               (3)

отображающая М на P, называется сложной функцией, составленной из f и g, а соответствующее отображение hсуперпозицией отображений f и g. Если, в частности, отображение w=f(z) взаимно однозначно и функция z=(w) – обратная к  f, то

                                                          [f(z)]=z.                                                        (4)

Пример 1. 

Линейная функция определяется во всей плоскости z соотношением

                                                  w=az+b,                                                                 (5)

a0 и b – произвольные комплексные постоянные. Положим k=a, =arg(a), т.е. a=k(cos+isin)=kei и представим функция (5) как сложную функцию, составленную из функций: a) z1=zei, б) z2=kz1, в) w=z2+b. В соответствии с геометрическим смыслом умножения отображения а) и б) сводятся соответственно к повороту плоскости на угол и подобному преобразованию плоскости z1 с коэффициентом подобия k. Отображение в) геометрически означает сдвиг всей плоскости z2 на постоянный вектор b.

Линейное отображение (5) представляет собой суперпозицию описанных отображений (см. рис. 3). Отсюда следует, что отображение (5) взаимно однозначно во всей плоскости и что оно преобразует прямые в прямые (причем углы между прямыми сохраняются), а окружности в окружности.

Пример 2. Функция

      w=f(z)=1/z.                                                     (6)

                Рис. 3                       Эта функция определена на полной (расширенной)

комплексной плоскости, причем , . Функция f(z) является однозначной и однолистной функцией z, отображающей полную плоскость z на полную плоскость w. (Легко установить, что функция f(z) является непрерыв-ной на полной комплексной плоскости за исключением точки z=0). В показательной форме имеем:

w=rei=(1/)e-i, (z=ei), т.е. w=1/z, arg(w)= –arg(z),

т.е. отображение, осуществляемое (6) является совокупностью (суперпозицией) двух отображений: =(z), где =z, arg()= –arg(z) и w=w(), где w=1/, arg(w)=arg().

Первое отображение имеет смысл зеркаль-ного отражения относительно действительной оси, когда точка z переходит в , а второе – инверсии, т.е. преобразования обратных радиу-сов, при котором каждой точке внутри (вне) кру-

       Рис. 4                     га ставится в соответствие точка вне (внутри) кру-га, лежащая на луче, проведенном из центра круга в данную точку, причем произведение расстояний от этих точек до центра круга равно квадрату радиуса круга. При этом точки плоскости z, лежащие вне единичного круга переходят в точки, лежащие внутри единичного круга плоскости w, и наоборот.

Пример 3. Функция

w=f(z)=z2

является однозначной функцией комплексной переменной z, определенной на полной комплексной плоскости z. Если z=ei, то w=rei=2ei2. Таким образом, точки плоскости z, лежащие на луче, составляющем угол с положительным направлением действительной оси, переходят в точки плоскости w, лежащие на луче, составляющем угол 2 с положительным направлением действительной оси. Поэтому точкам z и z, модули которых равны, а аргументы различаются на , соответствует одно и то же значение w, т.к. ei2=1. Тем самым обратная функция оказывается многозначной.

Таким образом, при отображении w=z2 верхняя полуплоскость вместе с действительной осью переходит в полную плоскость w. Положим для определенности, что в верхней полуплоскости аргумент z заключен в пределах 0<<. Тогда различным точкам области 0<< соответствуют различные значения w. Такая область изменения независимой переменной, различным точкам которой соответствуют различные значения функции, называется областью однолистности функции. В рассматриваемом случае границы области однолистности - лучи =0 и = - переходят в одну и ту же прямую –  положительную действительную полуось плоскости w. Функция w=z2 отображает и нижнюю полуплоскость z вместе с действительной осью на полную плоскость w. Тем самым обратная функция: , определенная на полной плоскости w, уже не является однозначной – одной и той же точке плоскости w соответствует 2 различных точки плоскости z: одна – в верхней, другая – в нижней полуплоскости.

Рассмотрим функцию . В соответствии с правилами извлечения корня из комплексного числа для каждого значения w=rei мы получим 2 различных значения функции z(w): zk=r1/2ei/2(+2k) (k=0,1), причем arg(z1) –arg(z0)=. Рассмотрим на плоскости w некоторую замкнутую кривую C без самопересечений. Зафиксируем на ней точку w0, имеющую arg(w0)=0, найдем z0(w0), z1(w0) и будем следить за изменением функций z0(w), z1(w) при непрерывном движении точки w по кривой C. При этом возможны два различных случая.

I. Kривая С не содержит точку w=0. Тогда после обхода С аргумент точки w вернется к первоначальному значению arg(w0)=0. Следовательно, и значения функций z0(w), z1(w) в точке w=w0 после обхода С равны их первоначальным значениям, т.е. на кривой С в этом случае определены две различные однозначные функции комплексной переменной w: z0=r1/2ei/2, z1= r1/2ei/2(+2), ( изменяется непрерывно на С, начиная от значения 0=arg(w0)). Очевидно, если область D плоскости w обладает тем свойством, что замкнутая кривая этой области не содержит точки w=0, то в D определены две различные однозначные непрерывные функции z0(w), z1(w), называемые независимыми ветвями многозначной функции. .

II. Кривая С содержит внутри точку w=0, тогда после обхода С в положительном направлении значение arg(w) уже не вернется к первоначальному значению 0, а изменится на 2. Поэтому и значения функций z0(w), z1(w) в точке w0 в результате их непрерывного изменения после обхода С станут равными   , т.е. функция  перейдет в  и наоборот.

Если для точки z0 можно указать такую -окрестность, что при однократном обходе т. z0 по любому замкнутому контуру, целиком лежащему в этой -окрестности, одна ветвь многозначной функции переходит в другую, то точка z0 называется точкой ветвления данной многозначной функции. В окрестности точки ветвления отдельные ветви многозначной функции уже нельзя рассматривать как различные однозначные функции, поскольку при обходе точки ветвления их значения меняются. В рассмотренном случае w=0 является точкой ветвления.

Обход окружности w=R сколь угодно большого радиуса соответствует обходу на плоскости =1/w точки =0 по окружности ==1/R. Поэтому при обходе точки w= так же, как при обходе т. w=0, одна ветвь функции  переходит в другую таким образом, точка w= также является точкой ветвления функции . Областью D, в которой определены однозначные ветви функции, является любая область плоскости w, в которой невозможен обход по замкнутому контуру точек ветвления w=0, w=. Такой областью является, например, вся комплексная плоскость w с разрезом вдоль положительной части действительной оси. При этом берега разреза являются границей данной области.

Если считать, что аргумент точек w для первой ветви изменяется в пределах 0<arg(w)<2, а для второй - в пределах 2<arg(w)<4, то первая ветвь функции  производит отображение плоскости w с разрезом на верхнюю полуплоскость z, а вторая ветвь отображает ту же область на нижнюю полуплоскость z.

Аналогично легко показать, что функция w=zn (n>0 – целое число) производит отображение любого сектора 2k/n<arg(z)<2(k+1)/n (k=0,1,…,n-1) плоскости z на полную плоскость w, разрезанную по положительной части действительной оси. Тем самым эти сектора представляют собой области однолистности данной функции.

Обратная функция  является многозначной, а точки w=0 и w= являются ее точкам ветвления.

5


 

А также другие работы, которые могут Вас заинтересовать

19891. Судовий розгляд кримінальної справи 49.77 KB
  ТЕМА 17: Судовий розгляд кримінальної справи 1. Загальні положення судового розгляду. 2. Підготовча частина судового засідання. 3. Судове слідство 4. Судові дебати та останнє слово підсудного. 5. Постановлення вироку. 1. Загальні положення судового розгляду Судови...
19892. Провадження справ у апеляційній інстанції 48.86 KB
  ТЕМА 18: Провадження справ у апеляційній інстанції План 1. Суть завдання та основні риси апеляційного провадження. 2. Суб'єкти процесуальний порядок і строки розгляду в суді кримінальних справ у апеляційному провадженні. 3. Скасування зміна вироку ухвали постанови ...
19893. Застосування примусових заходів медичного характеру 28.32 KB
  ТЕМА 19: Застосування примусових заходів медичного характеру План 1. Поняття примусових заходів медичного характеру та їх види 2. Процесуальний порядок провадження досудового слідства в справах про діяння неосудних або обмежено осудних осіб 3. Особливості судового
19894. Протокольна форма досудової підготовки матеріалів 27.85 KB
  ТЕМА 20: Протокольна форма досудової підготовки матеріалів План 1. Сутність протокольної форми досудової підготовки матеріалів. 2. Порядок оформлення протокольної форми досудової підготовки матеріалів органами внутрішніх справ. 3. Процесуальний порядок провадження...
19895. Провадження у справах про злочини неповнолітніх 41.7 KB
  ТЕМА 21: Провадження у справах про злочини неповнолітніх План 1. Особливості провадження у кримінальних справах про злочини неповнолітніх. 2. Предмет доказування у справах про злочини неповнолітніх. 3. Особливості провадження досудового і судового слідства у справах ...
19896. Поняття і система інвестиційного права 78 KB
  Лекція № 1. Тема : Поняття і система інвестиційного права. Мета: Ознайомлення студентів з поняттям функціями та системою інвестиційного права місцем інвестиційного права в системі права України. План 1. Місце інвестиційного права в системі права України. 2. По...
19897. Поняття інвестиційної діяльності 104.5 KB
  Лекція № 2. Тема 2: Поняття інвестиційної діяльності Мета: ознайомлення студентів з основами інвестиційної діяльності структурою інвестиційної діяльності поняттям інвестиційного клімату держави План 1. Поняття та класифікація інвестицій. Поняття інвестицій
19898. Правове регулювання фінансових інвестицій 97 KB
  Лекція № 3. Тема : Правове регулювання фінансових інвестицій. Мета: ознайомлення студентів з поняттям фінансові інвестиції основними цінними паперами основами управління інвестиційним портфелем План 1. Загальна характеристика фондового ринку в Україні. 2. Пра
19899. Субєкти інвестиційної діяльності 99 KB
  Лекція № 4. Тема 4: Суб'єкти інвестиційної діяльності. Мета: вивчення кола субєктів інвестиційної діяльності форми діяльності суб'єктів інвестиційної діяльності. План 1. Держава як суб'єкт інвестиційної діяльності. 2. Інвестиційний фонд компанія та довірчі то