22374

Операционные усилители (ОУ)

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Схема усилителя со следящей связью С делителя R4 R5 снимаем напряжение  Ua т. Напряжение на сопротивлению R стремится к нулю. От источника положительного напряжения через на диоде VD1 создается опорное напряжение которое вместе с напряжением обратной связи подается на неинвертирующий вход операционного усилителя. Если входное напряжение равно нулю то напряжение на входе усилителя равное разности напряжений на его зажимах равно напряжению в точке А: Даже без положительной обратной связи при таком напряжении напряжение на выходе...

Русский

2013-08-04

510 KB

11 чел.

Лекция 10

Содержание лекции

Операционные усилители (ОУ). Нейтрализация входного тока (следящая связь). Применение ОУ. Триггер Шмитта.

10.Операционные усилители (ОУ)

10.1. Нейтрализация входного тока в усилителях (следящая связь)

Рассмотрим схему, которая позволяет полностью исключить влияние постоянной составляющей (рис. 10.1).

Рис.10.1. Схема неинвертирующего усилителя переменного тока с R2

Для отвода входных токов со входов усилителя (чтобы он не входил в насыщение) необходимо подключить неинвертирующий    вход    к земле через резистор  R2 . Его выбирают 1 Мом и более.  CR2    -это фильтр, который должен пропускать самую  низкую усиливаемую частоту  fH .

Резистор  R2   для разряда емкости С.

При этом   RВХ   R2    и значит мы потеряли  бесконечно большое сопротивление ОУ.

    Для увеличения  RВХ   применяют схемы следящей связи (рис. 10.2, 10.3). Здесь используется положительная ОС.                          

Рис.10.2. Схема повторителя со следящей связью

Ua  Ub  и  Uab  0,

следовательно ток Iab  0 (через резистор R1). Это соответствует большому входному сопротивлению RВХ.

Рис.10.3. Схема усилителя со следящей связью

С делителя R4 ,R5  снимаем напряжение    Ua , т.е. Ua  Ub   (Ua>Ub).

Для транзисторных схем можем применить тот же принцип увеличения входного сопротивления (рис. 10.4 и 10.5).

Рис.10.4. К определению входного сопротивления усилителя на биполярном  транзисторе

Здесь   RВХ УС = R1  R2   RВХ .   R1  и R2    достаточно малы и определяют   RВХ УС.                         

Рис.10.5. Схема усилителя на биполярном транзисторе со следящей связью                              

Здесь  UЭ   в фазе с  UВХ     на  R (по переменному току ). Напряжение на сопротивлению R стремится к нулю. Это эквивалентно большому входному сопротивлению RВХ  по переменному току.

10.2.Применение операционных усилителей (ОУ)

10.2.1.Триггер Шмитта на ОУ

С помощью триггера Шмитта формируются импульсы из плавно меняющегося напряжения.

На рис. 10.6 приведена схема триггера Шмитта на ОУ. В триггере Шмитта используются усилители без частотной коррекции. В триггере применяется положительная обратная связь с коэффициентом передачи напряжения . Сопротивление больше, чем в несколько раз или в несколько десятков раз. Следовательно, β много меньше единицы, но так как коэффициент усиления операционного усилителя очень большой, то всегда , а во многих случаях .

От источника положительного напряжения через на диоде VD1 создается опорное напряжение, которое вместе с напряжением обратной связи подается на неинвертирующий вход операционного усилителя. Сопротивление включено для устранения разбаланса схемы входными токами усилителя. Если входное напряжение равно нулю, то напряжение на входе усилителя, равное разности напряжений на его зажимах, равно напряжению в точке А:

Даже без положительной обратной связи при таком напряжении напряжение на выходе становится равным напряжению насыщения . Чтобы выровнять положительное и отрицательное выходные напряжения, на выходе применен ограничитель, состоящий из двух стабилитронов и , включенных навстречу друг другу.

Пусть VD2 и VD3 имеют напряжение стабилизации при малом токе и падение напряжения при прямом смещении , что дает в сумме уровень ограничения . Сопротивление не должно быть меньше минимально допустимого сопротивления нагрузки усилителя.

Для наглядности зададимся также и другими величинами. Пусть                                                                                                                      , что дает . Итак, в рассматриваемом случае при  , а потенциал   точки  А = 0,6 + (1/25) (5 — 0,6) = 0,6 + 0,175 = 0,775 В.

Рис.10.6 . Триггер Шмитта на ОУ

Если входное напряжение, которое вначале равнялось нулю, постепенно повышать, то при входном напряжении, чуть большем напряжения  = 0,77, возникает регенеративный процесс переключения схемы и выходное напряжение достигает максимального отрицательного значения. В данном случае с учетом действия ограничителя выходное напряжение = —5 В.

После завершения регенеративного процесса переключения схемы потенциалточки А изменяется. Он становится равным

Дальнейшее повышение входного напряжения не изменяет выходного напряжения. Оно остается равным  

Входное напряжение можно повышать до тех пор, пока разностное входное напряжение не превысит предельно допустимого для данного типа схемы. Для микросхемы К140УД1В предельно допустимое разностное напряжение ±1,2 В. Следовательно, на вход микросхемы нельзя подавать положительное напряжение, превышающее 1,2 + 0,376 В.

Понижение входного напряжения вызывает обратный регенеративный процесс переключения схемы от до когда становится немного меньше потенциала точки А, в данном случае равного 0,376В. Передаточная характеристика триггера приведена на рис.10.7.

Преобразование синусоидального напряжения показано на рис.10.8.

 

Рис. 10.7. Передаточная характеристика триггера      Рис. 10.8. Формирование прямоугольного колебания из Шмитта на ОУ        синусоидального

10.2.2.Усилитель с дифференциальным входом

Рассмотрим дифференциальное включение операционного усилителя, которое представляет собой комбинацию инвертирующего и неинвертирующего включений (рис. 10.9). При дифференциальном включении операционного усилителя выходное напряжение пропорционально разности напряженийUВХ2 и UВХ1 на его входах.

Используя метод суперпозиции (наложения), находим выходное напряжение усилителя как сумму откликов на воздействия UВХ1 и UВХ2:

Рис.10.9.Дифференциальное включение операционного усилителя

Отсюда видно, что операционный усилитель в дифференциальном включении осуществляет математическую операцию вычитания.

Входное сопротивление по инвертирующему входу rВХ1 = R1. Входное сопротивление по неинвертирующему входу rВХ2 = R3 + R4, т.е. входные сопротивления неодинаковы: rВХ2 > rВХ1. Это нарушает симметрию усилителя. Еще одним недостатком рассмотренной схемы является работа операционного усилителя при больших синфазных напряжениях. Существуют схемы дифференциальных усилителей, свободные от указанных недостатков, но они содержат два и более ОУ.

10.2.3.Преобразователь напряжение - ток

На основе инвертирующего включения операционного усилителя может быть построен преобразователь напряжение - ток (рис.10.10). Найдем зависимость выходного тока преобразователя iВЫХ от входного напряжения UВХ.

Согласно первому закону Кирхгофа, полагая операционный усилитель идеальным, можно записать:

iВХ + iОС = 0

Поскольку инвертирующий вход операционного усилителя является точкой виртуального нуля, то

Рис.10.10.Преобразователь напряжение - ток

Из последнего соотношения находим:  .

10.2.4.Преобразователь  ток - напряжение

Инвертирующее включение операционного усилителя используется также в преобразователе ток - напряжение (рис.10.11). Найдем зависимость выходного напряжения преобразователя uВЫХ от входного тока IВХ.

Рис.10.11.Преобразователь  ток - напряжение

На основании первого закона Кирхгофа при условии, что операционный усилитель идеальный, запишем:

Поскольку инвертирующий вход ОУ является точкой виртуального нуля, то

Разрешив последнее уравнение относительно UВЫХ, получим   

откуда следует, что выходное напряжение UВЫХ преобразователя пропорционально входному току iВХ. Сопротивление компенсирующего резистора RK должно равняться сопротивлению резистора R в цепи обратной связи. Рассмотренный преобразователь ток-напряжение широко используется в составе цифро-аналоговых преобразователей.

Контрольные вопросы и задания

5

-5

1

0.5

d

c

b

a

0

UВХ

UВЫХ

5

-5

0

t

С

UВХ

RОС

R1

UД

А

DA

Uвых

Uвых,B

R2

R1

С

UВХ

R2

а

b

А

DA

Uвых

b

а

R1

С

UВХ

R5

А

DA

Uвых

R2

R3

R4

R2

UВЫХ

RЭ

UБ

RЭ

СP2

VT1

Rk

+UП

R2

СP1

R1

Uвх

СP2

VT1

Rk

+UП

R

СP1

R1

C

UВЫХ

UВХ


 

А также другие работы, которые могут Вас заинтересовать

23344. Сортировка и индексирование баз данных 87 KB
  Лабораторная работа №3: Сортировка и индексирование баз данных По дисциплине: Базы данных. Задание: Выполните сортировку по одному полю базы данных содержащей не менее 15 записей. Повторите сортировку для полей содержащих разные типы данных. Просмотрите результат сортировки в новой базе данных.
23345. рогнозирование периодичности технического обслуживания (межремонтной цикла tM ) для ансамбля однотипных мащин 44 KB
  16 ТМ 93 98 102 Данные для расчетов: Варианты 1 2 3 tk время измерения выходного параметра час 10 10 10 up предельное значение 100 150 200 u1 измеренные значения 9.5 155 21 u2 измеренные значения 12 165 19 u3 измеренные значения 11 14 23 u4 измеренные значения 105 145 22 u5 измеренные значения 85 15 17 u6 измеренные значения 9 15 20 u7 измеренные значения 95 135 21 u8 измеренные значения 10 157 15 u9 измеренные значения 105 153 24 u10 измеренные значения 95 15 18.
23346. Прогнозирование параметра технического состояния конкретного элемента по его реализации 78 KB
  Устинова Основы эксплуатации техники ЛАБОРАТОРНАЯ РАБОТА № 5 Прогнозирование параметра технического состояния конкретного элемента по его реализации Выполнил: Студент группы ВЕ187 Устюжанцев А. Этап 1 Аппроксимация изменения параметра степенной функцией вида: u0t = v0 t 1 Построить графики опытных данных и усредненной аппроксимирующей кривых Указание: Использовать метод МНК реализованный в Excel Этап 2 Определение...
23347. Определение точечных оценок для мат.ожидания и дисперсии выборки 120 KB
  ожидания и дисперсии выборки. Проверка выборки на обнаружение грубых погрешностей. При обнаружении промахов они отбрасываются из выборки после чего все вычисления начиная с п. Проверка выборки на нормальность.
23348. Найти точечные оценки для ресурса 247.5 KB
  Проверяемая гипотеза состоит в том что результат измерения Xk не содержит грубой погрешности. Для проверки гипотезы составим величины = 1504454 ; = 2772253; 4 Для обнаружения грубых погрешностей используется критерий Романовского заключающийся в том что промахами считаются те измерения для которых выполняется неравенство: 5 После выброса промахов из выборки все расчеты по пп. Напоминание Интервальная оценка...
23349. Определение долговечности машины по оптимальному технико-экономическому критерию 44.5 KB
  Для трех величин первоначальной стоимости машины S руб и двух значений n n=n1 n=n2 данные для которых указаны в таблице определить оптимальную долговечность машины. z1 = S t руб ч Вычислить функцию z1t для области времен t =[10 1000 ] час с шагом 10час. n = 2 n = 2 n = 2 n=3 n=3 n=3 S1 S2 S3 S1 S2 S3 Долговечность час 320 450 1000 40 50 80 Удельные затраты руб час 32625 4572222 10100 20600 32600 94600 Провести анализ...
23350. Свободные колебания в R - L - C контуре 2.98 MB
  Цель работы: изучение влияния сопротивления электрического контура на характер свободных колебаний в нем и параметры затухания. Величина называется частотой затухающих колебаний. При  02 0 период затухающих колебаний практически можно вычислять по формуле : при этом погрешность вычисления периода будет менее 2 . 2 приведен график изменения заряда конденсатора от времени уравнение 4 из которого видно что амплитуда затухающих колебаний уменьшается во времени по экспоненциальному закону со скоростью определяемой...
23351. ЯВЛЕНИЕ РЕЗОНАНСА В ПОСЛЕДОВАТЕЛЬНОМ КОЛЕБАТЕЛЬНОМ КОНТУРЕ 207.5 KB
  2 Поскольку уравнение 2 можно записать в виде: 3 где =R 2L величина называемая коэффициентом затухания 02 = 1 LC собственная частота колебаний контура. При малых коэффициентах затухания 0 можно считать что резонансная частота приблизительно равна собственной частоте колебаний контура. Параметры резонансной кривой очень удобно выражать через величину добротности контура Q.
23352. ЦЕПИ ПЕРЕМЕННОГО ТОКА 182 KB
  ОСНОВЫ ТЕОРИИ Как известно из теории при приложении к RLC цепи рис.1 переменного напряжения в цепи возникает переменный ток сдвинутый по фазе относительно напряжения .1 Величина амплитуды тока определяется соотношением : 1 где импеданс цепи переменного тока.