22378

ГЕНЕРАТОРЫ ПИЛООБРАЗНОГО НАПРЯЖЕНИЯ (ГПН)

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Принципы построения ГПН. ГПН в ждущем режиме. ГПН в автоколебательном режиме.

Русский

2013-08-04

352.5 KB

31 чел.

Лекция 14

Содержание лекции

Генераторы пилообразного напряжения (ГПН).  Принципы построения ГПН. ГПН в ждущем режиме. ГПН в автоколебательном режиме. Генераторы гармонических колебаний - RC-генераторы.

14.1.ГЕНЕРАТОРЫ ПИЛООБРАЗНОГО НАПРЯЖЕНИЯ (ГПН)

ГПН предназначены для получения напряжения, которое в течение некоторого времени нарастает или спадает по линейному закону. ГПН может работать в автоколебательном или ждущем режимах. ГПН используют в развертках электронно-лучевых трубок, в схемах сравнения, для задержки и расширения импульсов.

14.1.1.Принципы построения генераторов

На рис. 14.1  показана форма импульса пилообразного напряжения положительной полярности.

  •  tПР - длительность прямого (рабочего) хода;
  •  tОБР  - длительность обратного хода;
  •  tП -  длительность паузы (в ждущем режиме);
  •  T - период повторения;
  •  UМ - амплитуда импульса.
  •  Е – напряжение источника питания

Принцип получения пилообразного напряжения основан на разряде и заряде конденсатора С через резистор R (рис.14.2).

При замыкании ключа SA напряжение UC= =0. Если SA разомкнуть, то конденсатор С заряжается от источника постоянного напряжения Е по закону   , т.е. мы получим кривую, приведенную на рис.14.1.

Итак, для построения ГПН нужны ключ, зарядное устройство, конденсатор интегрирующий.

14.1.2. ГПН в ждущем режиме (рис. 14.3)

Интегрирующая цепь - RC. VT – коммутирующий транзистор. В исходном состоянии VT1  насыщен за счет выбора резистора  RБ . Напряжение на С мало. При подаче на базу VT (см. рис. 14.4) в момент t1, управляющего импульса отрицательной полярности с амплитудой, запирающей VT,  VT запирается и конденсатор С заряжается по цепи +ERC – корпус.

После окончания управляющего импульса VT открывается и конденсатор С разряжается через участок эмиттер - коллектор VT и он входит в режим насыщения снова.

Длительность прямого хода пилообразного импульса равна длительности управляющего импульса.

В этой схеме линейность импульса на выходе мала и поэтому применяют более сложные схемы с токостабилизирующими элементами или с ООС. Схемы с ООС просты и имеют малый коэффициент нелинейности.

14.1.3.Генератор падающего пилообразного напряжения на ОУ                        

Такие ГПН строят по принципу генераторов с ОС, интегрирующих постоянное напряжение источника питания, которое для них является входным. На рис.14.5 показана схема с интегрирующей RC-цепочкой, включенной в цепь ООС ОУ.

При     UИНВ ≈ 0 , UНЕИНВ > UИНВ и  UВЫХ = Е .

Конденсатор С заряжен до Е.

При подаче положительного импульса на вход (рис.14.6) VD закрывается и UИНВ повышается до уровня, обеспечивающего переход ОУ в активный режим. UВЫХ скачком уменьшается на небольшую величину. Конденсатор С начинает разряжаться через R. UИНВ возрастает, а значит, UВЫХ падает, т.е. С перезаряжается до - Е. После окончания входного импульса     UИНВ ≈ 0,  UВЫХ → +Е  и  С перезаряжается через диод VD до +Е.

14.1.4. ГПН в автоколебательном режиме (рис.14.7)

Схема состоит из компаратора DA1 и интегратора на DA2, а также цепи ОС на  R3 и R4.

Найдем

.

Временные диаграммы напряжений приведены на рис.14.8.

   

Рассматриваем с момента t=0. Пусть UOC<0 и тогда UI=-EП, а UOC определяется сопротивлениями  R3 и R4. При этом UI подается на VD2 и емкость С заряжается (выходное напряжение возрастает). Когда  UOC=0, компаратор опрокидывается (UI=+EП),  открывается VD1, на выходе появляется отрицательное напряжение и конденсатор С перезаряжается до -ЕП. Далее процесс повторяется.

ГПН в автоколебательном режиме

Схема ГПН в автоколебательном режиме приведена на рис.14.9. Схема состоит из компаратора на DA1 и интегратора на DA2, а также цепи обратной связи (R3 и R4).

Рис.14.9.Схема автоколебательного ГПН                  Рис.14.10.Временные диаграммы напряжений ГПН

Найдем

.

Временные диаграммы напряжений приведены на рис.14.10.

   Рассматриваем с момента t=0. Пусть UOC<0 и тогда UI=-EП, а UOC определяется сопротивлениями  R3 и R4. При этом UI подается на VD2 и емкость С заряжается (выходное напряжение возрастает). Когда  UOC=0, компаратор опрокидывается (UI=+EП),  открывается VD1, на выходе появляется отрицательное напряжение и конденсатор С перезаряжается до -ЕП. Далее процесс повторяется.

14.2.ГЕНЕРАТОРЫ ГАРМОНИЧЕСКИХ КОЛЕБАНИЙ

14.2.1.RC-генераторы

В диапазоне низких частот характеристики LC генераторов существенно ухудшаются, т.к. увеличиваются L и С  колебательного контура. Увеличение L приводит к увеличению омического сопротивления и снижению добротности. Из-за этого в этом диапазоне используют частотно-избирательные цепи из элементов R и С. В этих цепях на определенной частоте, называемой квазирезонансной, возникает сдвиг фаз, позволяющий создать схему автогенератора, называемую RC-генератором.

Различают генераторы с поворотом фазы в цепи ПОС (180° ) и без поворота фазы (0° ).

14.2.2.RC-генераторы с поворотом фазы

Такой RC-генератор содержит однокаскадный усилитель с ОЭ, в котором фаза выходного напряжения сдвинута на 180° , поэтому необходимо в частотно-зависимой ОС сдвинуть фазу на частоте генерации еще на 180°. Сдвиг осуществляется в фазирующей цепочке. В качестве такой цепочки используют Г-образные RC звенья.

Различают фазирующие цепочки R-параллель и С-параллель. На рис.14.11 и 14.12 показаны эти цепочки и их характеристики.

Итак, возможно построение генератора с коэффициентом усиления > 29 (баланс амплитуд), φ =  (баланс фаз).

Квазирезонансная частота определятся параметрами R и С:

  для цепочки R–параллель и

           для цепочки С–параллель.

Схема генератора на ОУ

Регулируемое R1 - для ООС – чтобы была требуемая амплитуда и форма.

tПР

Um

t

U

T

tОБР

tП

Е

0

Рис. 14.1 – Форма пилообразного импульса

R

Е

+

-

SA

C

UC

Рис.14.2. Схема, поясняющая принцип действия ГПН

Рис. 14.3. Схема ГПН в ждущем режиме

UВЫХ= UC

C

VT

RБ

+

Е

R

CР

UВХ

UВЫХ

Е

Um

t

0

0

t

tПР

t1

UВХ

Рис. 14.4. Временные диаграммы работы ГПН

Рис. 14.5.  Схема ГПН на  ОУ

R

UВХ

VD1

R2

UВЫХ

С

R1

DA1

tan

x

(

)

x

1

0

1

2

0

2

Рис. 14.6. Временные диаграммы работы ГПН на ОУ

t1

UBЫX

0

t

UBX

0

t


 

А также другие работы, которые могут Вас заинтересовать

36416. Типовые способы настройки контуров в системах подчиненного регулирования 17.06 KB
  Типовые способы настройки контуров в системах подчиненного регулирования. Оптимизация контура – выбор такого закона регулирования и параметров этого закона который в наибольшей степени соответствует требованиям статическим и динамическим характеристикам контура регулирования. Определение вида звена регулирования П И ПИ который обеспечивает наилучшие статические и динамические характеристики. Определение параметров регулирования постоянной времени коэффициента усиления и т.
36417. Критерий абсолютной устойчивости В.М.Попова 56.49 KB
  Критерий Попова в геометрическом варианте: для абсолютной устойчивости состояния равновесия НСАУ с устойчивой линейчатого и нелинейчатого характеристика которой лежит в секторе 0к достаточно чтобы модифицированный годограф Попова целиком лежал справа от прямой проходящей через точку 1 к j0с произвольным угловым коэффициентом 1 х. Обобщенный критерий Попова на случай нейтральной или неустойчивой линейной части: в этом случае корень характеристического уравнения линейной части имеет либо = 0 корень либо хотя бы 1 полис расположенный в...
36418. Физическая природа постоянных времени и времени запаздывания в моделях технологических объектов. Одноемкостные и многоемкостные объекты 12.92 KB
  Физическая природа постоянных времени и времени запаздывания в моделях технологических объектов. Физическая природа постоянных времени – электрическая индукция емкость; лампочка – идеальная нагрузка постоянная времени и временя запаздывания приближенно равны нулю и механическая: масса и момент инерции. Постоянная времени связана с теплоемкостью и с теплообменом. природа времени запаздывания – транспортная транспортер.
36419. Приведите классификацию и поясните сущность методов технической линеаризации 38.16 KB
  На выходе звена эта составляющая отфильтровывается низко частотной линейной частью системы.3 если А→∞ z0 x0 становится линейной во всем диапазоне изменения х. Для нелинейности типа зоны нечувствительности наложение на входной сигнал хn последованности импульсов прямоугольной формы с амплитудой А=n делает для постоянной составляющей х0 нелинейную характеристику линейной на участке шириной n12 посл. Она становится линейной уже при А=а.
36420. Электропривод и его место в структуре АСУТП 12.7 KB
  способы обеспечивают контроль за текущим состоянием объекта эффективные алгоритмы управления точные математические модели объектов быстродействие современных средств обработки информации позволяет быстро рассчитать величины управляющих воздействий и выдать их на объект. В настоящее время все больше для управления ЭП используют УВМ и микропроцессоры. При этом функции управления ЭП принимают на себя ВУ АСУТП обычно это МП или микроЭВМ связанные с ЭВМ более высокого уровня. При этом схема управления ЭП содержит только усилительные узлы и...
36421. Символьные вычисления в MatLab 357.5 KB
  Исследование скорости роста символьной функции описывающей некоторые параметры модели объекта анимированная визуализация полученной характеристики. здесь f1 имя функции х имя переменной вводится как строка в апострофах по которой производится дифференцирование n порядок производной. здесь f1_new имя функции х имя переменной вводится как строка по которой производится интегрирование. Здесь f1 имя функции переменной n порядок остаточного члена x имя переменной вводится как строка в апострофах по...
36422. Математические модели геометрического проектирования 312.5 KB
  Для автоматизации процесса построения Rфункции плоского геометрического объекта в виде точечного множества с шагом h можно предложить следующий алгоритм точки принадлежащие объекту отобразить в виде красных точек: А. Тогда по свойству Rфункции имеем Значит в точке с координатами xy рисуем красную точку если Pxy=0. Пример построения поверхности 0уровня Ффункции двух прямоугольников нахождение геометрического места точек касания объектов S1 и S2 1. Тогда поверхность 0уровня Ффункции двух прямоугольников задается четырьмя...
36423. Компьютерное моделирование процессов финансового рынка 292.5 KB
  При нажатии на кнопку Запрос Request вы получите котировки для совершения сделки: Кнопки Купить Buy и Продать Sell стали активными. По правой котировке можно купить Buy а по левой котировке продать Sell. Если в течение этого промежутка времени не было принято решение о сделки то кнопки Купить Buy и Продать Sell снова станут неактивными. Это говорит о том что вы или пытаетесь выставить ордер слишком близко к текущей цене ближе чем величина спрэда по данному инструменту либо неверно выбрали тип ордера Buy Limit Buy Stop...
36424. Компьютерное моделирование физических процессов 161.5 KB
  При этом судьба каждой частицы разыгрывается с помощью случайного выбора а полученные для множества частиц результаты подвергаются статистической обработке. Метод применяется например при проектировании ядерных реакторов детекторов частиц на ускорителях и обработке получаемых результатов а также во многих других случаях скажем при исследовании распространения мутаций в среде живых организмов. Мы будем изучать естественно очень простой вариант задачи прохождение пучка тяжелых частиц через слой газа состоящего из легких...