22380

СТАБИЛИЗАТОРЫ И ПРЕОБРАЗОВАТЕЛИ НАПРЯЖЕНИЯ

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Общие сведения Стабилизатором напряжения СН называется устройство поддерживающее с требуемой точностью напряжение на нагрузке при изменении дестабилизирующих факторов в определенных пределах. Это различие зависит от места включения СН: между источником напряжения и выпрямителем переменного тока; между выпрямителем и нагрузкой постоянного тока. Компенсационные СН КСН это системы автоматического регулирования выходного напряжения в которых используются также стабилитроны варисторы и т.

Русский

2013-08-04

132 KB

11 чел.

ЛЕКЦИЯ 17

СТАБИЛИЗАТОРЫ И ПРЕОБРАЗОВАТЕЛИ НАПРЯЖЕНИЯ

17.1. Общие сведения

    Стабилизатором напряжения (СН) называется устройство, поддерживающее с требуемой точностью напряжение на нагрузке при изменении дестабилизирующих факторов в определенных пределах.

    Различают СН переменного и постоянного тока. Это различие зависит от места включения СН: между источником напряжения и выпрямителем - переменного тока; между  выпрямителем и нагрузкой - постоянного тока.

    Существуют СН параметрические и компенсационные. Параметрические СН (ПСН) - в них используются элементы с нелинейной зависимостью – нелинейной ВАХ (стабилитроны, транзисторы, лампы и т.д.).

    Компенсационные СН (КСН) - это системы автоматического регулирования выходного напряжения, в которых используются также стабилитроны, варисторы и т.д. (варистор - полупроводниковый резистор с нелинейной ВАХ ).

    Преобразователи напряжения (ПН) - преобразователи постоянного тока одного напряжения в постоянный ток другого напряжения.

17.3. Основные параметры стабилизаторов

    1. Коэффициент стабилизации - это отношение относительного изменения напряжения на входе к относительному изменению напряжения на выходе:

    Кст =  Uвх /Uвх :  Uвых /Uвых.

    2. Выходное сопротивление:

    Rвых =   Uвых /  Iвых при Uвх  = const.    Должно быть как можно меньше.

    3. КПД:     η = Рвых / Pвх.

17.4. Структурные схемы компенсационных стабилизаторов

    КСН - это система автоматического регулирования, состоящая из:

Р - регулирующего элемента,

УС - устройства сравнения и усиления,

ИОН - источника опорного напряжения.

 Схемы КСН могут быть двух видов: последовательного (рис.17.1) и параллельного (рис.17.2).

Если Uвых   , то разность (Uвых –Uион)

изменится; после усиления воздействует на регулирующий элемент, изменяя (в данном случае увеличивая) его сопротивление и Uвх перераспределяется между Р и  Rн, уменьшаясь в Rн. Обычно этот применяют, но критичен  КЗ на Rн, т.к. тогда  Uвх приложено к Р.

Здесь тоже измеряется и усиливается разность (Uвых –Uкон), которая воздействует на Р, включенный параллельно нагрузке. Если Uвых , сопротивление Р    и Uвых не изменяется. Имеют невысокий КПД и применяются редко.

17.5. Схемы компенсационных  СН

17.5.1. Простейшая схема КСН (рис. 17.3)

 

ИОН - VD1.

УС и Р - VT1.                                                      Усилительного элемента нет.

В нормальном режиме VT1 не полностью открыт и Uвых = Uст. Это схема эмиттерного повторителя. Если Uвых, а Uбэ + Uн = Uст, то Uбэ  , т.к. U = const и VT1 открывается еще больше, его сопротивление    и Uвых = Uн . Кст = 150...300

17.5.2. КСН с УПТ (рис.17.4)

Более высокий Кст ≈ до 1000.                                                        Р - VT1. R2 - балластное;  R2 - VD1 – стабилизатор параметрический.

ИОН - VD1.  R1 – коллекторное сопротивление усилителя УС и                                                         усиления - VT2.

Пусть Uвых ↑, тогда UБЭ2 ↑ , т.к. Uэ = const = Uоп. VT2 приоткрывается, ток Iк2 ↑, Uk2 ↓ и  VT1  призакрывается, что ведет к восстановлению номинального напряжения на нагрузке.

17.5.3. КСН с ОУ (рис. 17.5)                                                                                                                

УС и усилительный элемент – ОУ. Uвых  , потенциал на инвертирующем входе больше, чем на неинвертирующем. На выходе ОУ возникает отрицательное приращение напряжения   ΔUБ  но UБЭ = - Uвых + UБ, т.е. UБЭ ↓  и ток через VT1↓   , т.е.  Uвых  ↓.

17.6. Преобразователи постоянного напряжения

    Используются главным образом с целью снижения веса и габаритов. Экономичны –η до 90%; fП = 20 кГц, т.е. трансформаторы маленькие и емкости тоже; не создают помех акустических.

    Строятся по структурной схеме, приведенной на рис. 17.6.

На рис.17.7 приведена двухтактная схема преобразователя  постоянного напряжения. Основной элемент - автогенератор (собран на Т1, VT1, VT2. T1 обычно ферритовый с прямоугольной петлей гистерезиса.

R1, R2 - делитель для запуска преобразователя при включении напряжения питания Е.                                                                                                                                               

Е - это преобразуемое напряжение.

Uн - это полученное после преобразования напряжение.

Принцип действия

    После включения напряжения питания на R1, шунтированном С, появляется напряжение ≈ 0,5 В, которое прикладывается к базам транзисторов, отпирая один из них.

    Пусть открылся VT1 и закрылся VT2. VT1 будет открыт до тех пор, пока  магнитный поток не достигнет в Т1 величины насыщения. Уменьшение токов вызывает  появление в обмотках э.д.с. противоположных полярностей (знаки в скобках на схеме). Теперь базовая обмотка WБ2, создает на базе VT2 положительное напряжение, а WБ1  , на базе  VT1 - отрицательное. Это приводит к отпиранию VT2 и запиранию VT1, но это приводит к еще большему увеличению токов и, следовательно,  происходит лавинообразный процесс. В схеме  ПОС с помощью базовых обмоток. В результате процесса  ≈   все напряжение Е приложено к  Wк1  (WК2). Возникшие колебания передаются во вторичную обмотку, далее выпрямляются и фильтруются, поступая затем в Rн.                                                         

ИОН

 УС

 Р

ИОН

 УС

 Р

RH

RH

RБ

UВЫХ

UВЫХ

UВХ

UВХ

Рисунок 17.1 – Схема последовательного КСН

Рисунок 17.2 – Схема параллельного КСН

UBX

VT1

RH

R1

UBЫX

VD1

UЭ

UБ

Рисунок 17.3 – Схема простейшего стабилизатора напряжения

Рисунок 17.4 – Схема стабилизатора напряжения с УПТ

UБ

UЭ

VD1

UBЫX

UBX

VT1

R3

R1

VT2

R2

R2

VD

VT1

DА1

Рисунок 17.65– Схема стабилизатора напряжения с операционным усилителем

UБ

+

UBX

R3

R1

UBЫX

U0

βUВЫХ

+

Источник постоянного напряжения

Автогенератор

Выпрямитель

Фильтр

Нагрузка

Рисунок 17.6 – Структурная схема преобразователя постоянного напряжения

Рисунок 17.7 – Схема двухтактного преобразователя постоянного напряжения

WK2

WK1

WБ1

LФ

CФ

RН

R1

R2

C

VT2

VT1

T1

WБ2

VD1–VD4

Е

UВЫХ

+(-)

+(-)

-(+)

+(-)

+(-)

-(+)

-(+)

-(+)

+


 

А также другие работы, которые могут Вас заинтересовать

22622. Вимірювання струмів та напруг у колах постійного струму 60 KB
  Для вимірювань у колах електричного струму користуються електровимірювальними приладами які промисловість випускає у великій кількості. Найчастіше вимірювання у колах постійного струму здійснюється за допомогою приладів магнітоелектричної системи. Магнітоелектричні прилади дозволяють отримати кут повного відхилення стрілки у межах 90 100 і можуть бути використані для вимірювань тільки постійного струму.
22623. Градуювання напівпровідникового датчика температури 81.5 KB
  При вимірюванні опору постійному струму натискати кнопку K можна тільки після підключення об'єкту вимірювання.Зняти залежність опору напівпровідникового датчика від температури та побудувати графік T = f R. Наприклад як фізичний принцип за яким можна побудувати термометр широко використовується залежність опору R від температури Т. Для реєстрації незначних змін опору супутніх незначним перепадам температур потрібна апаратура високої точності а це ускладнює але не виключає зовсім застосування металів як датчиків температури.
22624. Визначення моментів інерції твердого тіла 246.5 KB
  Визначення моментів інерції твердого тіла.Експериментальне визначення параметрів еліпсоїда інерції твердого тіла. 3 Запишемо це векторне рівняння у проекціях на вісі координат з початком у точці беручи до уваги що : 4 З метою спрощення зробимо наступні позначення у рівняннях 4: 5 Вирази позначені однаковими подвійними індексами відтворюють моменти інерції тіла відносно відповідних осей наприклад ОХ ОУ ОZ тобто ті моменти інерції...
22625. ГІРОСКОП 112.5 KB
  Вимірювання швидкості прецесії гіроскопа. Визначення моменту імпульсу та моменту інерції гіроскопа. Макетна установка для спостереження явища регулярної прецесії гіроскопа та виконання необхідних вимірювань. Головне припущення елементарної теорії гіроскопа полягає у тому що і при повільному русі осі обертання у будьякий момент часу момент імпульсу гіроскопа відносно його нерухомої точки вектор вважається направленим по осі гіроскопа у той же бік що й вектор кутової швидкості .
22626. Принципова схема лазера. Властивості лазерного випромінювання. Основні типи лазерів 47.5 KB
  Властивості лазерного випромінювання.Такий процес називається вимушеним індукованим випромінюванням. Для виходу випромінювання одне з дзеркал резонатора роблять напівпрозорим. Окрім підсилення хвилі активним середовищем є фактори що зменшують амплітуду хвилі фактори: коефіцієнт відбивання дзеркал r 1 виводимо частину випромінювання з системи дифракція розсіяння світла середовищем резонатора.
22627. Основні принципи голографії 47 KB
  Метод реєстрації фази хвилі та її відновлення називається голографією. Голограма система перепонок розташованих на шляху світлової хвилі що несе в собі зашифровану фазову та амплітудну інформацію про предмет. Інтенсивність на фотопластинці : де амплітуда опорної хвилі амплітуда відбитої від предмета хвилі. Відтворення за допомогою голограми хвилі яка була розсіяна предметом і несла з собою інформацію про нього ґрунтується на фотометричних властивостях фотографічних матеріалів.
22628. Явище Доплера в оптиці і в акустиці 50.5 KB
  Акустичні хвилі розповсюджуються в середовищі газі всередині якого можуть рухатись джерело і приймаючий пристрійтак що потрібно розглядати не тільки їх рух відносно одинодного а й по відношенню до середовища. Швидкість хвилі в середовищі С=const не залежить від руху джерела. Отже хвилі що вийшли за час τ=t2t1 дійдуть до пристрію протягом часу Θ=Θ2Θ1=τ1V с. Вона рівна: у випадку віддалення від джерела у випадку наближення до джерела Так як швидкість хвилі в середовищі визначається властивостями хвилі тобто не залежить від руху...
22629. Закони збереження та фундаментальні властивості простору і часу 62.5 KB
  Однорідний простір всі точки еквівалентні: L не змінюється при перенесені на нескінченно малий 1 довільне → Рівняння Лагранжа просумуємо по і тоді тобто оскільки закон збереження імпульсу є наслідком варіаційного принципу і однорідності простору. Однорідність часу = закон збереження енергії для ізольованих систем а також для незамкнених систем якщо зовнішні умови не змінюються з часом. Ізотропність простору еквівалентність всіх напрямків: L не зміниться якщо систему повернути на нескінченно малий кут навколо довільної...
22630. Рух тіл в інерціальних та неінерціальних системах відліку. Сили інерції. Коріолісове прискорення 75.5 KB
  Система відліку в якій прискорення матеріальної точки цілком обумовлено лише взаємодією її з іншими тілами а вільна матеріальна точка яка не підлягає дії ніяких інших тіл рухається відносно такої системи прямолінійно і рівномірно називається інерціальною системою відліку ІСВ. Твердження про те що такі системи відліку існують складає зміст 1ого закону Ньютона. Принцип відносності Галілея говорить про те що закони механіки не змінюють свого вигляду при переході від однієї системи відліку до іншої яка рухається рівномірно і прямолінійно....