22380

СТАБИЛИЗАТОРЫ И ПРЕОБРАЗОВАТЕЛИ НАПРЯЖЕНИЯ

Лекция

Коммуникация, связь, радиоэлектроника и цифровые приборы

Общие сведения Стабилизатором напряжения СН называется устройство поддерживающее с требуемой точностью напряжение на нагрузке при изменении дестабилизирующих факторов в определенных пределах. Это различие зависит от места включения СН: между источником напряжения и выпрямителем переменного тока; между выпрямителем и нагрузкой постоянного тока. Компенсационные СН КСН это системы автоматического регулирования выходного напряжения в которых используются также стабилитроны варисторы и т.

Русский

2013-08-04

132 KB

10 чел.

ЛЕКЦИЯ 17

СТАБИЛИЗАТОРЫ И ПРЕОБРАЗОВАТЕЛИ НАПРЯЖЕНИЯ

17.1. Общие сведения

    Стабилизатором напряжения (СН) называется устройство, поддерживающее с требуемой точностью напряжение на нагрузке при изменении дестабилизирующих факторов в определенных пределах.

    Различают СН переменного и постоянного тока. Это различие зависит от места включения СН: между источником напряжения и выпрямителем - переменного тока; между  выпрямителем и нагрузкой - постоянного тока.

    Существуют СН параметрические и компенсационные. Параметрические СН (ПСН) - в них используются элементы с нелинейной зависимостью – нелинейной ВАХ (стабилитроны, транзисторы, лампы и т.д.).

    Компенсационные СН (КСН) - это системы автоматического регулирования выходного напряжения, в которых используются также стабилитроны, варисторы и т.д. (варистор - полупроводниковый резистор с нелинейной ВАХ ).

    Преобразователи напряжения (ПН) - преобразователи постоянного тока одного напряжения в постоянный ток другого напряжения.

17.3. Основные параметры стабилизаторов

    1. Коэффициент стабилизации - это отношение относительного изменения напряжения на входе к относительному изменению напряжения на выходе:

    Кст =  Uвх /Uвх :  Uвых /Uвых.

    2. Выходное сопротивление:

    Rвых =   Uвых /  Iвых при Uвх  = const.    Должно быть как можно меньше.

    3. КПД:     η = Рвых / Pвх.

17.4. Структурные схемы компенсационных стабилизаторов

    КСН - это система автоматического регулирования, состоящая из:

Р - регулирующего элемента,

УС - устройства сравнения и усиления,

ИОН - источника опорного напряжения.

 Схемы КСН могут быть двух видов: последовательного (рис.17.1) и параллельного (рис.17.2).

Если Uвых   , то разность (Uвых –Uион)

изменится; после усиления воздействует на регулирующий элемент, изменяя (в данном случае увеличивая) его сопротивление и Uвх перераспределяется между Р и  Rн, уменьшаясь в Rн. Обычно этот применяют, но критичен  КЗ на Rн, т.к. тогда  Uвх приложено к Р.

Здесь тоже измеряется и усиливается разность (Uвых –Uкон), которая воздействует на Р, включенный параллельно нагрузке. Если Uвых , сопротивление Р    и Uвых не изменяется. Имеют невысокий КПД и применяются редко.

17.5. Схемы компенсационных  СН

17.5.1. Простейшая схема КСН (рис. 17.3)

 

ИОН - VD1.

УС и Р - VT1.                                                      Усилительного элемента нет.

В нормальном режиме VT1 не полностью открыт и Uвых = Uст. Это схема эмиттерного повторителя. Если Uвых, а Uбэ + Uн = Uст, то Uбэ  , т.к. U = const и VT1 открывается еще больше, его сопротивление    и Uвых = Uн . Кст = 150...300

17.5.2. КСН с УПТ (рис.17.4)

Более высокий Кст ≈ до 1000.                                                        Р - VT1. R2 - балластное;  R2 - VD1 – стабилизатор параметрический.

ИОН - VD1.  R1 – коллекторное сопротивление усилителя УС и                                                         усиления - VT2.

Пусть Uвых ↑, тогда UБЭ2 ↑ , т.к. Uэ = const = Uоп. VT2 приоткрывается, ток Iк2 ↑, Uk2 ↓ и  VT1  призакрывается, что ведет к восстановлению номинального напряжения на нагрузке.

17.5.3. КСН с ОУ (рис. 17.5)                                                                                                                

УС и усилительный элемент – ОУ. Uвых  , потенциал на инвертирующем входе больше, чем на неинвертирующем. На выходе ОУ возникает отрицательное приращение напряжения   ΔUБ  но UБЭ = - Uвых + UБ, т.е. UБЭ ↓  и ток через VT1↓   , т.е.  Uвых  ↓.

17.6. Преобразователи постоянного напряжения

    Используются главным образом с целью снижения веса и габаритов. Экономичны –η до 90%; fП = 20 кГц, т.е. трансформаторы маленькие и емкости тоже; не создают помех акустических.

    Строятся по структурной схеме, приведенной на рис. 17.6.

На рис.17.7 приведена двухтактная схема преобразователя  постоянного напряжения. Основной элемент - автогенератор (собран на Т1, VT1, VT2. T1 обычно ферритовый с прямоугольной петлей гистерезиса.

R1, R2 - делитель для запуска преобразователя при включении напряжения питания Е.                                                                                                                                               

Е - это преобразуемое напряжение.

Uн - это полученное после преобразования напряжение.

Принцип действия

    После включения напряжения питания на R1, шунтированном С, появляется напряжение ≈ 0,5 В, которое прикладывается к базам транзисторов, отпирая один из них.

    Пусть открылся VT1 и закрылся VT2. VT1 будет открыт до тех пор, пока  магнитный поток не достигнет в Т1 величины насыщения. Уменьшение токов вызывает  появление в обмотках э.д.с. противоположных полярностей (знаки в скобках на схеме). Теперь базовая обмотка WБ2, создает на базе VT2 положительное напряжение, а WБ1  , на базе  VT1 - отрицательное. Это приводит к отпиранию VT2 и запиранию VT1, но это приводит к еще большему увеличению токов и, следовательно,  происходит лавинообразный процесс. В схеме  ПОС с помощью базовых обмоток. В результате процесса  ≈   все напряжение Е приложено к  Wк1  (WК2). Возникшие колебания передаются во вторичную обмотку, далее выпрямляются и фильтруются, поступая затем в Rн.                                                         

ИОН

 УС

 Р

ИОН

 УС

 Р

RH

RH

RБ

UВЫХ

UВЫХ

UВХ

UВХ

Рисунок 17.1 – Схема последовательного КСН

Рисунок 17.2 – Схема параллельного КСН

UBX

VT1

RH

R1

UBЫX

VD1

UЭ

UБ

Рисунок 17.3 – Схема простейшего стабилизатора напряжения

Рисунок 17.4 – Схема стабилизатора напряжения с УПТ

UБ

UЭ

VD1

UBЫX

UBX

VT1

R3

R1

VT2

R2

R2

VD

VT1

DА1

Рисунок 17.65– Схема стабилизатора напряжения с операционным усилителем

UБ

+

UBX

R3

R1

UBЫX

U0

βUВЫХ

+

Источник постоянного напряжения

Автогенератор

Выпрямитель

Фильтр

Нагрузка

Рисунок 17.6 – Структурная схема преобразователя постоянного напряжения

Рисунок 17.7 – Схема двухтактного преобразователя постоянного напряжения

WK2

WK1

WБ1

LФ

CФ

RН

R1

R2

C

VT2

VT1

T1

WБ2

VD1–VD4

Е

UВЫХ

+(-)

+(-)

-(+)

+(-)

+(-)

-(+)

-(+)

-(+)

+


 

А также другие работы, которые могут Вас заинтересовать

35043. CAD/CAM системы среднего уровня на примере систем Cimatron, MasterCam, Solid Edge 585.5 KB
  Реферат по САПР на тему: CD CM системы среднего уровня на примере систем Cimtron MsterCm Solid Edge.5 MsterCm. На рынке программных продуктов широко используются два типа твердотельного геометрического ядра: Prsolid CIS К наиболее известным CD CM системам среднего уровня построенным на основе ядра CIS относятся: DEM Cimtron MsterCm utoCD 2000 Powermill CDdy Brvo К наиболее известным CD CM системам среднего уровня построенным на основе ядра Prsolid относятся: ...
35044. Программное обеспечение Consistent Software ElectriCS 3D 83 KB
  Реферат на тему: Программное обеспечение Consistent Softwre ElectriCS 3D Студент: Петров И.3 Назначение ElectriCS 3D.4 Предмет автоматизации ElectriCS 3D.4 Достоинства ElectriCS 3D.
35045. Изотопы в природе 156 KB
  Основная заслуга в открытии стабильных изотопов принадлежит английскому физику Ф. он установил что инертный газ неон атомный вес 202 является смесью двух изотопов с атомными весами 20 и 22. Ученый проводил исследования на протяжении полутора десятилетий и обнаружил 210 стабильных изотопов большинства элементов. Химические элементы как правило представляют собой смесь изотопов т.
35047. Радиоэкология и ОС 99 KB
  В него не включают поступившие в окружающую среду искусственные радиоактивные вещества от испытаний ядерного оружия и от работы предприятий ядерного топливного цикла ЯТЦ. Загрязнение биосферы радионуклидами образовавшимися при испытаниях ядерного оружия. Испытания ядерного оружия в атмосфере были начаты США в 1945 г. большинство стран подписали Договор об ограничении испытаний ядерного оружия кроме подземных.
35048. ХИМИЧЕСКИЙ СОСТАВ АТМОСФЕРЫ 170.5 KB
  Отношение содержание инертных газов в атмосфере Земли к их содержанию в солнечной системе Такое различие указывает что земная атмосфера не есть производная солнечной атмосферы а образовалась при эволюции самой Земли. Если аргон третий по объему газ атмосферы выделился из горных пород значит и остальные газы могли поступить также. Особенно сильное воздействие живые организмы оказали на состав атмосферы.
35049. ГИДРОСФЕРА 118.5 KB
  Воды Мирового океана покрывают 2 3 поверхности планеты и образуют основную массу ее водной оболочки. Воды Мирового океана составляют около 93 всех вод биосферы поэтому можно считать что химический состав гидросферы в целом определяется главным образом химическим составом океанических вод. Существует мнение и не без основания что для Земли характерно постоянное присутствие воды на её поверхности. Катионы переходили сразу в раствор поэтому воды сразу же стали солеными.
35050. Биосфера Состав живого вещества 238 KB
  Сумма зольных элементов это сложный итог взаимодействия живого вещества с земной корой. Поэтому изучение зольных элементов так же важно как и определение главных элементов в организме. С целью исключения влияния сильно варьирующих количеств воды и приведения данных о содержании химических элементов к выражению удобному для сравнения рассчитывают содержание элементов на абсолютно сухое органическое вещество высушенное до постоянной массы при температуре 102 105 оС. В этом случае получают значения содержания элементов не в реальных...
35051. Деформация природных биогеохимических циклов хозяйственной деятельностью человека 204.5 KB
  Значителен расход кислорода на окисление выплавляемых промышленностью металлов главным образом железа. Ежегодно поступающее в окружающую среду количество техногенных тяжелых металлов сопоставимо с массами металлов участвующих в глобальных процессах массообмена таблица 2.3 Массы тяжелых металлов вовлекаемых в техногенную и природную миграцию 103 т год по В. При выплавке металлов также выделяются в атмосферу крупные массы диоксида серы.