22395

Системный (структурный) уровень компьютерного проектирования сложных объектов

Лекция

Информатика, кибернетика и программирование

Системный подход к задаче автоматизированного проектирования технологического процесса; 2. Системный анализ сложных процессов 3 Этапы проектирования сложных систем 1. Системный подход к задаче автоматизированного проектирования технологического процесса Системный подход к задачам автоматизированного проектирования требует реализации совместного проектирования технологического процесса ТП и автоматизированной системы управления этим процессом АСУТП.

Русский

2013-08-04

230 KB

18 чел.

ЛЕКЦИЯ №2

Тема:  Системный (структурный) уровень компьютерного проектирования сложных объектов.

1. Системный подход к задаче автоматизированного проектирования   технологического процесса;

2. Системный анализ сложных процессов

3  Этапы проектирования сложных систем

1. Системный подход к задаче автоматизированного проектирования технологического процесса

Системный подход к задачам автоматизированного проектирования требует реализации совместного проектирования технологического процесса (ТП) и автоматизированной системы управления этим процессом (АСУТП).

В связи с этим в литературе в последние годы речь идет уже не о решении отдельных задач, а о совместном проектировании этих двух процессов [49, 8, 59, 30, 44, 83 и др.].

Традиционное раздельное рассмотрение задач проектирования и производства изделий уже не удовлетворяет потребностям сегодняшнего дня, т. к. не может гарантировать ни высокого качества проектирования, ни надлежащего уровня организации производственных процессов, обеспечивающих их реализацию.

Однако именно в процессе проектирования порождается существенная часть информации, используемой для организации производства [7]. Появилось новое понятие: автоматизированный технологический комплекс (АТК).

При автоматизации технологический процесс рассматривается как технологический объект управления (ТОУ).  Последний представляет собой совокупность технологического оборудования и реализованного на нем по соответствующим инструкциям и регламентам технологического процесса производства. Управление ТОУ осуществляется с помощью автоматизированной системы управления (АСУТП)), представляющей собой человеко-машинную систему управления, которая обеспечивает автоматизированный сбор и обработку информации, необходимой для оптимизации управления технологическим процессом в соответствии с принятым критерием [83].

Совместно функционирующие ТОУ и управляющая ими АСУТП составляют автоматизированный технологический комплекс (АТК) [49].

Системный подход к проектированию АТК требует объединения проектирования технологических процессов и разработки автоматизированной системы управления этим процессом в соответствии со структурой АТК.

Если АТК рассматривать как систему "ТПАСУТП", то на определенных этапах проектирования технологического процесса необходимо выполнение требований, предъявляемых к АСУТП. Это позволяет сократить сроки проектирования АТК и создать более эффективную систему.

Следовательно, проектирование АТК объединяет два направления проектирования: разработку ТП и АСУТП. Поскольку цель создания АТК — это управление некоторым сложным объектом, то следует различать управляемую и управляющую системы. Управляемой системой является технологический производственный комплекс, который является объектом управления. Управляющей является автоматизированная система управления.

АТК представляет собой сложную многоуровневую блочно-иерархическую систему с оптимизацией решений в каждом слое. Упрощенно ее можно представить в следующем виде (рис. 3.1):

Сущность блочно-иерархического подхода заключается в расчленении объекта проектирования на уровни с постепенной детализацией представления системы сверху вниз. При этом система рассматривается не в целом, а отдельными блоками. Преимущество блочно-иерархического подхода состоит в том, что сложная задача большой размерности расчленяется на последовательно решаемые задачи малой размерности [49].

Системный подход к проектированию АТК требует учета следующих основных принципов:


Рис. 1.  Взаимодействие АТК с объектами управления

  •  реализации совместного проектирования технологического процесса и разработки АСУТП этим процессом в соответствии со структурой АТК;
  •  использования блочно-иерархического принципа, основанного на представлении АТК сложной системой;
  •  целенаправленности, т. е. в результате проектирования должна быть достигнута цель, включающая создание АТК с малой энергоемкостью и высокой производительностью.

Первый принцип требует, чтобы ряд отдельных операций выполнялся параллельно. Кроме того, на определенных этапах проектирования технологического процесса, как уже отмечалось ранее, к нему предъявляются требования АСУТП.

Второй принцип требует разбивать АТК как сложную систему на ряд элементов и подсистем.

Третий принцип требует организовать деятельность проектировщиков АТК в виде целенаправленных действий. При этом определяется сначала глобальная (общая) цель проектирования, например создание высокопроизводительного АТК с малой энергоемкостью. Эта цель уточняется и представляется в виде некоторых числовых соотношений. Затем задается влияние элементов и систем на глобальную цель проектирования, а также задач проектирования отдельных элементов и систем на общее проектирование АТК.

Такой анализ помогает установить частные цели проектирования, позволяющие достичь глобальной цели. При этом предполагается, что многокритериальная задача может быть свернута в однокритериальную с единственным критерием оптимизации.

2. Системный анализ сложных процессов

При анализе сложных процессов, когда не представляется возможным найти внутренние связи в системе, используется известный в кибернетике принцип "черного ящика". Этот принцип заключается в том, что, не имея информации о существе, внутренней структуре процесса, для его математического описания используют лишь зависимость выходных величин от входных.

Понятие "черного ящика" относится к основным понятиям кибернетики, помогая при изучении поведения систем, т. е. реакций на различные внешние воздействия, абстрагироваться от их внутреннего устройства. Многие системы, особенно большие, оказываются настолько сложными, что даже имея полную информацию о состоянии их элементов, практически невозможно связать ее с поведением системы в целом [62]. В таких случаях представление такой сложной системы в виде некоторого "черного ящика", функционирующего аналогично, облегчает построение упрощенной модели. Анализируя поведение модели и сравнивая его с поведением системы, можно сделать ряд выводов о свойствах самой системы и при их совпадении со свойствами модели выбрать рабочую гипотезу о предполагаемом строении исследуемой системы.

Пусть на вход системы подаются воздействия X, а на выходе получают показатели качества P (рис. 3.1). Наблюдая достаточно долго за поведением такой системы и, если потребуется, выполняя активные эксперименты над ней, т. е. изменяя некоторым определенным образом входные воздействия, можно достигнуть такого уровня знаний свойств системы, чтобы иметь возможность предсказать изменение ее выходных показателей при любом заданном изменении входных.

Метод, использующий "черный ящик", широко применяют для решения задач моделирования управляемых систем (особенно при исследовании сложных технических объектов) в тех случаях, когда представляет интерес поведение системы, а не ее строение [104].

В этих ситуациях зачастую единственно пригодными оказываются статистические методы оптимизации, поскольку ни технолог, ни управляющая ЭВМ в ряде случаев не способны в ходе процесса учесть суммарный эффект действия множества различных факторов, часто связанных сложными зависимостями. Кроме того, на процессах могут сказываться явления, недоступные контролю по физическим или техническим причинам. Следовательно, производственная информация носит стохастический характер. Этим объясняется применение для исследования и управления технологическим процессом статистических методов [46, 98].

При использовании статистических методов возникают две основные задачи: построение модели и нахождение стратегии оптимального управления. Для решения этих задач разработан ряд эффективных статистических методов.

При создании математических моделей универсальным является метод регрессионного анализа [56, 34, 18, 9090]. В этом случае зависимость каждого выходного параметра (показателя качества) процесса от различных факторов представляется в виде многочлена, включающего рассматриваемые факторы и их комбинации. Коэффициенты при отдельных слагаемых многочлена (коэффициенты регрессии) определяются путем статистической обработки экспериментальных данных [26]. Стремление учитывать влияние многих факторов приводит к необходимости сбора и обработки больших массивов информации. С целью значительного сокращения объема работы в настоящее время широко применяется метод многофакторного эксперимента. Существо метода состоит в том, что взамен традиционного исследования влияния отдельных факторов при неизменных остальных при каждом опыте исследуется влияние одновременного изменения нескольких факторов. Даже при небольшом числе исследуемых переменных метод позволяет значительно уменьшить объем экспериментов при условии, что их чередование выполняется по определенному плану. Эффективность метода возрастает с увеличением сложности исследуемого процесса [56].

При наличии разработанной модели задача оптимизации сводится к прогнозированию хода процесса при различных комбинациях воздействий и выбору оптимального варианта. Имеется ряд методов, позволяющих осуществлять целенаправленный поиск вариантов в направлении возрастания целевой функции, в частности, так называемый симплексметод и его модификации, пригодные для линейных регрессионных моделей. Реализация таких методов наиболее эффективна в системах управления на основе ЭВМ [27].

Большинство автоматизированных систем управления технологическими процессами) из-за специфических особенностей технологии производства электронных приборов могут быть созданы только на основе методов статистического управления. Это обусловило переход от простейших методов статистического управления к более сложным, и в первую очередь — к методам корреляционно-регрессионного анализа и составления регрессионных уравнений как математико-статистических моделей процессов.

Методология системного анализа достаточно универсальна и может быть использована как для процесса проектирования в целом, так и для отдельных стадий и этапов проектирования. При переходе от общего проектирования к отдельным стадиям будет меняться содержание целей, альтернатив и решений, но общая последовательность этапов анализа будет сохраняться [49].

При проектировании АТК с помощью ЭВМ составляется прежде всего задание на проектирование. Задание составляется генеральным проектировщиком или заказчиком с участием той организации, которая будет разрабатывать проект.

Задание на проектирование включает в себя целый ряд пунктов, подробно перечисленных в [87]. Отметим некоторые из них (в произвольном порядке):

  •  основание для проектирования;
  •  перечень производств, цехов, установок, охватываемых проектами систем автоматизации, с указанием для каждого особых условий (при их наличии), например класс взрыво- и пожароопасности помещений, наличие влажной, сырой окружающей среды и т. д.;
  •  стадийность проектирования;
  •  требования к разработке вариантов проекта (части проекта);
  •  планируемый уровень капитальных затрат на автоматизированное проектирование и примерных затрат на научно-исследовательские работы (НИР), опытно-конструкторские работы (ОКР) и проектирование с указанием источников финансирования, и др.

Например, основанием для разработки той или иной радиосистемы или элемента может быть необходимость использования его в более крупной системе или его преимущества по сравнению с имеющимися (известными) аналогами. А основанием для автоматизированного проектирования АТК являются, как правило, сокращение сроков проектирования и внедрения, уменьшение количества ошибок при проектировании, обеспечение возможности изменения проектных решений, сокращение сроков тестирования микросхем [8].

По мере усложнения системы (например для РЭС: ИС, БИС, микросхем, радиосистем и т. д.) резко возрастает время разработки и внедрения, увеличиваются трудозатраты. Соответственно, происходит пропорциональный рост расходов на разработку и внедрение. Этот фактор необходимо учитывать уже на стадии формулирования основания для проектирования и непосредственно использовать при проведении расчетов по технико-экономическому обоснованию.

Формирование внешних условий по отношению к проектируемому объекту необходимо потому, что они должны быть учтены уже на самых первых этапах проектирования. Например, одни и те же технологические операции на различных установках в одних и тех же условиях могут иметь некоторый разброс значений выходных параметров; аналогично, одна и та же установка будет иметь разброс значений при различных условиях окружающей среды и т. д. Исследование такого рода влияния — одна из задач научно-исследовательской работы, поскольку указанные факторы влияют и на сам технологический процесс, и на адекватность математических моделей, описывающих этот процесс.

Рассмотрим, как связаны пункты задания со стадийностью проектирования. Стадийность создания систем автоматизированного проектирования регламентируется стандартами [59], поясняется в нормативной документации [30] и специальной литературе [87, 44]. Не останавливаясь подробно на всех положениях, принятых в указанных источниках, обратим внимание на содержательную сторону начальных стадий создания, поскольку в практических, производственных условиях именно содержательная сторона оказывается "узким местом" при формальном соблюдении гостированных этапов.

3. Этапы проектирования сложных систем

Рассмотрим основные этапы проектирования с позиций технологии обработки информации.

Традиционно проектирование сложных технических систем подразделяют на следующие этапы или стадии разработки (рис. 3.2):

  •  техническое задание на проектируемый объект;
  •  научно-исследовательская работа;
  •  эскизный проект;
  •  технический проект;
  •  рабочий проект;
  •  технология изготовления и испытания спроектированного объекта (опытного образца или партии), внесения коррекции (при необходимости).


Рис. 3.2.  Этапы проектирования сложных систем

Техническое задание

На этапе разработки технического задания (ТЗ) решаются следующие задачи:

  •  поиск и выбор необходимой научно-технической информации (о прототипах, патентных данных и т.д.) из соответствующей базы данных. Новая схема (устройство) может либо иметь, либо не иметь аналогов. В случае, если аналоги имеются, можно приступить к этапу проектирования устройства (системы). Но, как правило, аналога нет или разрабатываемая система должна превосходить известный аналог, поэтому необходимо проведение этапа НИР;
  •  анализ выбранной информации и формулировка на его основе технических требований (ТТ) к проектируемому объекту. Оформление ТТ в соответствии с установленными правилами.

На данном этапе проектирования могут быть автоматизированы операции поиска информации и оформления документов. Может быть также автоматизирована некоторая часть вспомогательных действий по анализу выбранной информации, например, группировка ее по заданным признакам, выбор наименее или наиболее сопоставимых друг с другом вариантов и т. д.

Кроме того, на этапе ТЗ решаются и оформляются в соответствующих документах, например, следующие вопросы:

  •  перечисление функций, выполняемых устройством;
  •  разработка структурной схемы устройства;
  •  оформление условий работоспособности устройства;
  •  оформление требований к выходным параметрам;
  •  определение характеристик отдельных узлов;
  •  разработка алгоритмов выполняемых операций.

Этап НИР

Этот этап является предварительным проектированием. Это один из самых ответственных этапов. Для решения задач этого этапа необходимо использование ЭВМ. Это так называемые автоматизированные системы научных исследований (АСНИ).

На этапе НИР необходимо решение следующих задач:

  1.  Формулирование критериев качества и управления.
  2.  Управление научным экспериментом.
  3.  Проведение пассивного или (и) активного эксперимента с обработкой их результатов.
  4.  Разработка математических моделей и их идентификация по экспериментальным данным.
  5.  Отработка технологических процессов изготовления объектов РЭС с целью поиска норм на параметры, обеспечивающих оптимальные выходные показатели качества.
  6.  Формирование обобщенного критерия качества, включающего в себя все частные показатели качества. Обобщенный критерий принимается далее за целевую функцию при решении задачи оптимизации.
  7.  Решение задачи оптимизации. Производится варьирование входных и управляющих параметров технологического процесса в рамках установленных норм (допусков) с целью получения оптимального критерия качества.
  8.  Поиск принципиальной возможности построения системы.
  9.  Разработка новых технических средств, в том числе средств контроля и измерений.

В результате проведения НИР выдается Техническое Предложение (ТП).

Хотя этап НИР является самостоятельным этапом, здесь могут использоваться методы, алгоритмы и программы из САПР.

Этап ОКР

Это этап эскизного проектирования. На данном этапе производится следующее решение задач:

  1.  Разрабатывается эскиз проектируемой системы (устройства) с детальной разработкой ее возможностей, осуществляется поиск и выбор более детальной информации.
  2.  На основе анализа полученной информации принимают предварительные проектные решения и оформляют первые проектные документы.
  3.  Для выработки проектных документов производят различные расчеты, содержание, объем и трудоемкость которых зависят от характеристик проектируемого объекта.

Работы этого этапа в наибольшей степени поддаются автоматизации, и их автоматизация дает наибольший технико-экономический эффект за счет оптимизации проектных решений.

Автоматизация указанных работ достигается за счет применения оптимизационных математических методов.

Этап разработки технического проекта объекта

На этом этапе детализируют и уточняют решения, принятые при эскизном проектировании, и создают новые, более точные проектные документы. Снова производят поиск, выбор и анализ исходной информации (в основном нормативно-технической и технико-экономической). Снова выполняют многочисленные расчеты, но уже по другим, более точным методикам. Эти работы в значительной степени могут быть автоматизированы.

Большинство документов, сформированных на этапах эскизного и технического проектирования, используются только для выполнения рабочего проектирования и не входят в состав рабочей и эксплуатационной документации. Информация, наработанная на рассмотренных стадиях, служит исходной для рабочего проектирования. Это значит, что в условиях автоматизированного проектирования целесообразно создание банков временной информации по проектируемому объекту.

Рабочее проектирование

На стадии рабочего проектирования основным видом выполняемых работ является оформление проектных решений в виде чертежей, спецификаций к ним и эксплуатационной документации на объект.

Современные средства вычислительной техники позволяют полностью автоматизировать оформление чертежей и спецификаций, и в определенной степени — формирование эксплуатационной документации.

Если система автоматизации проектирования выполняет выпуск не только рабочего проекта, но и проектирование технологии, тогда целесообразно не изготавливать чертежи и спецификации в традиционном виде, а передавать проектировщикам-технологам информацию на машинных носителях в виде базы данных о проектируемом объекте.

Проектирование технологии изготовления спроектированного объекта

На этой стадии традиционно выполняют работы в процессе технологической подготовки производства изделия или его узлов и деталей на предприятии-изготовителе.

При проектировании технологии производят:

  •  поиск и выбор исходной информации (об объекте, подлежащем изготовлению; о технологическом оборудовании предприятия; о технологических и трудовых нормативах);
  •  анализ и обработку данных в целях определения маршрутов обработки, последовательности технологических операций и режимов их проведения, потребности в инструменте и измерительном оборудовании, в создании специальной оснастки;
  •  оформление соответствующей технологической документации.

Работы, названные в Техническом задании и Техническом проекте, идентичны многим операциям при проектировании изделия. Собственно проектирование технологии требует оригинальных расчетов и решений для различных видов технологических операций. Тем не менее методы формализации большинства таких работ существуют, следовательно, они могут быть автоматизированы.

Автоматизация операций обработки информации и процессов управления использованием информации на всех рассмотренных стадиях проектирования составляет сущность функционирования современных САПР.

Основное назначение САПР — решение задач эскизного и технического проектирования. На этих этапах разрешаются вопросы синтеза топологии (разбиение электрической схемы на функционально законченные части, размещение элементов электрической схемы, трассировка — определение трасс между элементами) а также разработка и выпуск фотошаблонов.

В процессе синтеза топологии могут использоваться мини-ЭВМ и различные средства малой автоматизации: графические экранные пульты, координатографы и т. д. В этом случае применяются интерактивные методы. Менее практически используется, но более перспективно автоматизированное проектирование при синтезе топологии с применением больших ЭВМ и средств малой автоматизации.

Из рис. 3.2 следует, что формирование исходных данных для проектирования продолжается и на этапе технического задания (ТЗ), и на этапе НИР (АСНИ). На этапе НИР уточняются связи "вход-выход", осуществляется определение информативности параметров, проводится активный эксперимент, разрабатываются математические модели и алгоритмы управления технологическим процессом.

Согласно ГОСТ [83], научно-исследовательские работы проводятся на стадии технического задания; кроме того, эти работы допускается проводить даже на более ранних стадиях.

Проектирование системы (или устройства) состоит из двух основных этапов [104]:

  •  обоснование исходных данных (технических условий, технического задания) для проектирования;
  •  проектирование системы для сформулированных исходных данных.

Первый этап называют внешним проектированием, а второй этап — внутренним проектированием.

При рассмотрении задачи проектирования системы необходимо задать класс допустимых исходных данных (класс технических условий), класс допустимых решений (класс проектов) и способ построения какого-либо проекта из класса допустимых решений по произвольному техническому условию из класса допустимых исходных данных. Автоматизированное проектирование тогда сводится к заданию конкретного технического условия из класса допустимых исходных данных и применению к нему алгоритма перехода к классу решений [46].

Исходные данные обосновываются путем всестороннего рассмотрения условий работы системы и требований, предъявляемых к системе исходя из ее назначения. Вновь создаваемая система, как правило, содержит элементы уже существующих систем, поэтому этап уяснения задачи при проектировании включает в себя обследование всего достигнутого ранее в поисках методов, аналогов и элементов для разрабатываемой системы, а также предусматривает выявление потребностей. Этот этап характеризуется тем, что превращает начальную неопределенную ситуацию в набор данных, которые позволяют сформулировать цели, определяющие весь процесс проектирования. Следовательно, уяснение задачи начинается со сбора информации, касающейся проектируемой системы. При этом необходимо проведение анализа уже существующих систем и используемых методов в них, достигнутый уровень технического и технологического развития, природное окружение, экономические условия, общественные и индивидуальные человеческие факторы — все эти условия необходимо учитывать при проектировании системы [98].

Процесс обоснования исходных данных (внешнее проектирование) существенно зависит от того, является ли проектируемая система частью более сложной системы, т.е. подсистемой (или устройством), или она задумана автономной, т.е. может использоваться заказчиком самостоятельно. В том случае, когда разрабатываемая система будет составляющей (подсистемой) более сложной системы, перед тем как формулировать исходные данные для таких составляющих, надо систему разбить на эти части. Для сложных объектов выполнить одновременно оптимальное проектирование для всех частей не удается. Особенно это относится к тем случаям, когда требуется не только выбрать параметры системы, но и синтезировать ее структуру. Поэтому при проектировании систем средней и особенно большой сложности их обычно разбивают на подсистемы или сегменты.

Чем на большее число частей разбита система, тем труднее правильно сформулировать исходные данные для каждого сегмента, но тем легче провести оптимизацию для тех исходных данных, которые для него установлены. Поэтому в каждом конкретном случае проектирования определяют наиболее целесообразное число сегментов, на которое следует разбить систему, чтобы получить решение, наиболее близкое к оптимальному. Нередко это целесообразное число частей удается получить лишь в процессе совместного проведения ряда последовательных этапов внешнего и внутреннего проектирования [104].

При обосновании исходных данных для проектирования системы необходимо учитывать реальные ограничения. Эти ограничения сформулированы в ряде работ [83, 46 и др.].

Исходные данные (исходное описание) не должны нести избыточной информации. В то же время должны быть заданы все основные параметры и характеристики будущей системы и технические условия проектирования, ограничивающие проектные решения. Если процесс проектирования разбивается на этапы, исходные данные каждого этапа должны содержать минимально необходимую информацию для его прохождения.

Язык представления исходных данных (в том числе язык исходных данных каждой из подсистем) должен быть близок к системе понятий, употребляемой инженерами-проектировщиками.

Внешний вид записи исходных и конечных данных на каждом этапе должен быть близким к обычно применяемым проектировщиками техническим описаниям. Например, готовый проект должен представлять совокупность описаний в виде чертежей, смет, пояснительных записок, содержащих всю технико-экономическую информацию, необходимую для изготовления, отладки и сдачи системы в эксплуатацию, и делиться на отдельные специализированные части: функциональные схемы, структурные схемы, спецификации, сметы, принципиальные схемы, алгоритмы управления, программы управления.

Всю исходную информацию, подготовленную для разработки технологических процессов, подразделяют на базовую, руководящую и справочную [56].

Базовая информация состоит из конструкторской документации на изделие и программы выпуска этого изделия.

Руководящая информация включает данные, содержащиеся в следующих документах:

  •  отраслевых стандартах, устанавливающих требования к технологическим процессам и методам управления ими, а также стандартам на оборудование и оснастку;
  •  документации на действующие единичные, типовые и групповые технологические процессы;
  •  классификаторах технико-экономической информации;
  •  материалах по выбору технологических нормативов (режимов, норм расхода материалов и т. д.);
  •  документации по технике безопасности и промышленной санитарии.

Справочная информация включает данные, содержащиеся в следующих документах:

  •  технической документации опытного производства;
  •  описаниях прогрессивных методов изготовления и ремонта;
  •  каталогах, паспортах, справочниках, альбомах компоновок прогрессивных средств технологического оснащения;
  •  методических материалах по управлению технологическими процессами;
  •  планировках производственных участков.

Итак, для выполнения проектов систем автоматизированных технологических комплексов (АТК) должны быть представлены следующие исходные данные и материалы [87]:

  •  уточненные технологические схемы с характеристиками оборудования;
  •  перечни контролируемых и регулируемых параметров с необходимыми требованиями (например нормами, контрольными границами регулирования и т. д.);
  •  чертежи производственных помещений с расположением технологического оборудования;
  •  чертежи технологического оборудования, на котором предусматривается установка приборов и средств автоматизации;
  •  требования к надежности систем автоматизации;
  •  результаты НИР и ОКР, содержащие рекомендации по проектированию систем и средств автоматизации;
  •  техническая документация по типовым и проектным решениям и др.

Основными рекомендациями, выдаваемыми в результате проведения НИР и ОКР, должны быть, как уже говорилось, перечень наиболее информативных (контролируемых и регулируемых) параметров, математические модели и алгоритмы управления, эскиз проектируемой системы.

Контрольные вопросы и упражнения

  1.  В чем сущность системного подхода к автоматизированному проектированию технологического процесса?
  2.  Что представляет собой АТК?
  3.  Что является ТОУ?
  4.  Как расшифровывается АСУТП?
  5.  Что является управляемой системой?
  6.  Что является управляющей системой?
  7.  В чем сущность блочно-иерархического подхода к проектированию?
  8.  Какие принципы требуется учитывать при проектировании АТК?
  9.  В чем заключается принцип "черного ящика"?
  10.  Какие пункты включает в себя задание на проектирование?
  11.  Опишите стадии разработки сложных технических систем.
  12.  Что называется внешним проектированием?
  13.  Что называется внутренним проектированием?
  14.  Что включает в себя руководящая информация?
  15.  Какие данные включаются в справочную информацию?


 

А также другие работы, которые могут Вас заинтересовать

8272. Поняття і структура правової системи 38.5 KB
  Поняття і структура правової системи. Мета: Актуалізувати знання учнів зі питань поняття і структура правової системи , поглибити їх з урахуванням вікових та індивідуальних особливостей учнів розвивати вміння аналізувати зміст понять, висловлювати ...
8273. Вступ до Основ правознавства. Історичний аспект виникнення держави 57 KB
  Тема уроку: Вступ до Основ правознавства. Історичний аспект виникнення держави. Мета уроку: Ознайомлення учнів з основними аспектами теорії держави та права. Формування правових знань в учнів: загальне розуміння правових понять, термінів здатність ...
8274. Поняття і загальна характеристика права 59.5 KB
  Тема уроку. Поняття і загальна характеристика права. Мета: Актуалізувати знання учнів зі питань загальної характеристики соціальних норм, моралі, права, поглибити їх з урахуванням вікових та індивідуальних особливостей учнів розвивати вміння аналіз...
8280. Правовідносини. Види, зміст, об’єкти і суб’єкти правовідносин 47.5 KB
  Тема уроку. Правовідносини. Види, зміст, об’єкти і суб’єкти правовідносин. Мета: Актуалізувати знання ліцеїстів з питання правовідносини, поглибити їх з урахуванням вікових та індивідуальних особливостей учнів розвивати вміння аналізувати...