22418

Сравнения функций. Свойства функций, непрерывных на отрезке

Лекция

Математика и математический анализ

Если предел 1 равен 0 то функция fx называется бесконечно малой более высокого порядка чем gx при x  a а функция gx называется бесконечно малой более низкого порядка чем fx при x  a. Если предел 1 равен   то функция fx является бесконечно малой болей низкого порядка чем gx при x  a а gx функция является бесконечно малой более высокого порядка чем fx при x  a. Если предел 1 равен   то функция является бесконечно большой при x  a. Тогда по свойству бесконечно малых функция бесконечно малая при...

Русский

2013-08-03

218.5 KB

1 чел.

220400                                                  Математический анализ                                        Толстиков А.В.

Курс 1. Семестр 1. Лекция 8. Сравнения функций. Свойства функций, непрерывных на отрезке

  1.  Сравнения функций. Символ о и его свойства.
  2.  Символ О и его свойства.
  3.  Эквивалентные функции и их применение к отысканию пределов.
  4.  Теоремы о промежуточных значениях функций непрерывных на отрезке (первая и вторая теоремы Больцано- Коши).
  5.  Теоремы об ограниченности и существовании наибольшего и наименьшего значений функций непрерывных на отрезке (первая и вторая теоремы Вейерштрасса).

Литература: Ильин В.А., с.105-127;  Письменный Д., с. 130-135. Ермаков В.И., с.199-205. Архипов Г.И., Садовничий В.А., Чубариков В.Н. , с.90-97.  

  1.  Сравнения функций. Символ о-малое и его свойства.

Пусть f(x) и g(x) две бесконечно малые функции при x  a, где a  - конечная или бесконечная точка. Пусть существует предел

.                                                                        (1)

Определение 1. Если предел (1) равен 0, то функция  f(x) называется бесконечно малой более высокого порядка чем g(x) при x  a, а  функция g(x) называется бесконечно малой более низкого порядка, чем f(x) при x  a.

Определение 2. Если предел (2) конечен и не равен 0, то функции f(x) и g(x) называется бесконечно малыми одного порядка при x  a.

Теорема 1.  Если предел (1) равен  (), то функция f(x) является бесконечно малой болей низкого порядка  чем g(x) при x  a, а g(x) функция является бесконечно малой более высокого порядка, чем f(x) при x  a.

Доказательство. Если предел (1) равен (), то функция  является бесконечно большой при x  a. Тогда по свойству бесконечно малых функция  бесконечно малая при x  a. Отсюда f(x) является бесконечно малой болей низкого порядка  чем g(x) при x  a. 

Определение 3. Если предел (1) равен 0, то пишут так же f(x) = о(g(x)) и говорят, что функция f(x) о-малое ограничена или о-ограничена функцией g(x) при x  a.

Последнее определение справедливо для любых функций f(x) и g(x) в том числе и для бесконечно больших при x  a.лишь бы существовал предел (1).

Теорема 2. 1. Если f1(x) = о(g(x)) при x  a, f2(x) = о(g(x)) при x  a, то f1(x)  f2(x) = о(g(x)) при x  a.

2. Если f1(x) = о(g(x)) при x  a и функция  f2(x) ограничена при x  a , т.е. ограничена в некоторой выколотой окрестности точки а,  = о(g(x)) при x  a, то f1(x)f2(x) = о(g(x)) при x  a.

Доказательство. 1. Пусть f1(x) = о(g(x)) при x  a, f2(x) = о(g(x)) при x  a. По свойству предела имеем

Тогда по определению 3 f1(x)  f2(x) = о(g(x)) при x  a.

2. Пусть f1(x) = о(g(x)) при x  a, функция  f2(x) ограничена при x  a. По свойству бесконечно малых функция

бесконечно малая при x  a. Тогда по определению 3 f1(x)f2(x) = о(g(x)) при x  a.

Пусть существует предел

.                                                                        (1)

Определение 4. Пусть f(x) и g(x) две бесконечно малые функции при x  a, где a  - конечная или бесконечная точка, n - положительное действительное число. Функция  f(x) называется бесконечно малой n- го  порядка относительно g(x) при x  a, если существует конечный предел

,

т. е. если функции f(x) и g(x) имеют одинаковый порядок при x  a.  

Теорема 3. 1. Сумма (разность) двух бесконечно малых функций различных порядков m, n, m  n есть бесконечно малая функция порядка, равного  min{m, n}.

  1.  Сумма (разность) двух бесконечно малых функций порядка n есть бесконечно малая функция порядка не меньшего чем n.
  2.  Произведение двух бесконечно малых функций различных порядков m, n есть бесконечно малая функция порядка равного mn.

Доказательство. Пусть f1(x),  f2(x) две бесконечно малых функций порядков n, m относительно функции g(x) при x  a.

1. Пусть m  n, k = min{m, n}. По определению 4

.

Отсюда, если k = m, получаем k < n и

Тогда порядок функции f1(x)  f2(x) равен k. Аналогично рассматривается случай k = n.

2. Пусть m = n. Тогда

Таким образом, предел равен постоянной. Следовательно,  порядок функции f1(x)  f2(x) не меньше m.

3. Так как

Следовательно,  порядок функции f1(x)f2(x) не меньше mn.

  1.  Эквивалентные функции и их применение к отысканию пределов.

Определение 1. Пусть a  - конечная или бесконечная точка. Бесконечно малые функции  f(x) и g(x) при x  a называются эквивалентными бесконечно малыми при x  a, если

,                                                                                     (1)

пишем f(x)  g(x) при x  a.

Определение 2. Пусть a  - конечная или бесконечная точка. Бесконечно большие функции  f(x) и g(x) при x  a называются эквивалентными бесконечно большими при x  a, если

,

пишем f(x)  g(x) при x  a.

Замечание 1. Эквивалентные бесконечно малые при x  a есть бесконечно малые одного порядка при x  a.

Теорема 1. Пусть f(x) и g(x) две эквивалентные  бесконечно малые (большие) функции при x  a, g(x) - некоторая функция, определенная в некоторой выколотой окрестности точки . Тогда

;                                                                     (2)

Доказательство. Используя свойства предела и определение эквивалентных бесконечно малых получаем

.

Аналогично доказываются два остальные утверждения теоремы.

Замечание 2. Теорема 1 утверждает, что при вычислении пределов произведений (частных)  при x  a можно одни бесконечно малые (большие) множители (числителя или знаменателя) заменять другими им эквивалентными при x  a.

Теорема 2. Имеют место следующие эквивалентности:

  1.  sin x  x при x  0;  
  2.  1-cos x  x2/2 при x  0;
  3.  tg x  x при x  0;
  4.  ln (1+ x)  x при x  0;
  5.  (1+ x )k - 1  kx при x  0;
  6.    x/k при x  0;
  7.   a0xk при x  , a0  0. 

Доказательство. Следует из замечательных пределов. Например, первая формула следует из первого замечательного предела

Пример 1. Вычисляем предел, заменяя бесконечно малые функции им эквивалентными.

Теорема 2. Пусть f(x) и g(x) две эквивалентные  бесконечно малые (большие) функции при x  a. Тогда функция f(x) - g(x) является бесконечно малой при x  a более высокого порядка чем , т.е. f(x) - g(x) = о(f(x)), f(x) - g(x) = о(g (x)) при x  a.

Доказательство. Имеем

.

Тогда по определению 4 первого пункта f(x) - g(x) = о(f(x)) при x  a. Аналогично доказываются второе утверждения теоремы.

Определение 2. Представление бесконечно малой функции f(x) в виде f(x) = a0xk + о(xk) при x  0 называется выделением главной части, при этом a0xk   называется главной частью f(x).

Отсюда и из теоремы 1 получаем следующее следствие

Следствие. Имеют место следующие о-оценки:

  1.  sin x = x + o(x) при x  0;  
  2.  1-cos x = x2/2 + o(x) при x  0;
  3.  tg x = x + o(x) при x  0;
  4.  ln (1+ x) = x + o(x) при x  0;
  5.  (1+ x )k - 1 = kx + o(x) при x  0;
  6.   = x/k + o(x) при x  0.
  7.  Символ О и его свойства.

Определение 1. Пусть a  - конечная или бесконечная точка. Бесконечно малая функции  f(x) называется                 O-ограниченной по отношению к бесконечно малой g(x) при x  a , если функция f(x)/g(x)  ограничена в некоторой окрестности точки a, т.е. существует такое число С, что в некоторой окрестности точки a выполняется неравенство

,                                                                                     (1)

пишем f(x) =O(g(x)) при x  a.

Определение 2. Пусть a  - конечная или бесконечная точка. Бесконечно большая функции  f(x) называется ограниченной по отношению к бесконечно большой g(x) при x  a , если функция f(x)/g(x)  ограничена в некоторой окрестности точки a, т.е. существует такое число С, что в некоторой окрестности точки a выполняется неравенство

,                                                                                     (1)

пишем f(x) =O(g(x)) при x  a.

Неравенство (1) равносильно неравенству

.

Замечание 1. Если бесконечно малые функции f(x) и g(x) сравнимы при x  a (в частности, если они эквивалентные при x  a), то каждая из функций f(x) и g(x) ограничена относительно другой при x  a.

2. Если функция f(x) ограничена в некоторой окрестности точки a, то в силу определения имеем f(x) = О(1) при     x  a.

Пример 1. Если a0  0, то = O(xk)  при x  . 

2.  (x2-2)sin x = O(x2) при x  . (x2-2)sin x = O(x) при x  0.

Теорема 1. 1. Если функция определена в некоторой окрестности точки а, то  f(x) = O(f(x)) при x  a 

2. Если f(x) = O(g(x)) при x  a, g(x) = O(h(x)) при x  a, то f(x) = O(h(x)) при x  a.

3. Если f(x) = O(h(x)) при x  a, g(x) = O(h(x)) при x  a, то f(x)  g(x) = O(h(x)) при x  a.

4. Если f(x) = O(h1(x)) при x  a, g(x) = O(h2(x)) при x  a, то f(x) g(x) = O(h1(x) h2(x)) при x  a.

Доказательство. 1. Вытекает из того, что в некоторой окрестности точки а имеем  f(x) = 1 f(x).

2. Пусть f(x) = O(g(x)), g(x) = O(h(x)) при x  a . Тогда для любого x из 1 - окрестности точки a выполняется неравенство  

,

для любого x из 2 - окрестности точки a выполняется неравенство  

.

Полагаем    = min (1, 2) и получаем, что для любого x из - окрестности точки a выполняется неравенство  

.

Последнее неравенство обозначает, что g(x) = O(h(x)) при x  a.

3. Пусть f(x) = O(h(x)), g(x) = O(h(x)) при x  a . Тогда для любого x из 1 - окрестности точки a выполняется неравенство  

,

для любого x из 2 - окрестности точки a выполняется неравенство  

.

Полагаем    = min (1, 2) и получаем, что для любого x из - окрестности точки a выполняется неравенство  

.

Последнее неравенство обозначает, что f(x)  g(x) = O(h(x)) при x  a.

Последнее утверждение теоремы доказывается аналогично.

  1.  Теоремы о промежуточных значениях функций непрерывных на отрезке (первая и вторая теоремы Больцано- Коши).

Определение 1. Функция f(x) называется непрерывной на отрезке [a, b]., если она непрерывна в любой точке x0 (a, b) и непрерывна справа в точке a, и непрерывна слева в точке b.

Теорема 1(первая теорема Больцано- Коши).  Пусть функция f(x) удовлетворяет условиям:

  1.  f(x) определена, непрерывна на отрезке [a, b];
  2.   на концах отрезка f(x) принимает значения разных знаков, т. е. f(a) f(b) < 0.

Тогда существует такая точка c (a, b), что f(a) =0.

Доказательство.  Пусть для функции f(x) выполняются условия теоремы, и пусть для определенности f(a) < 0,  f(b) > 0. Обозначим отрезок [a, b] через  [a0, b0] и разделим его пополам точкой . Тогда либо в этой точке функция f(x) обращается в ноль, и теорема доказана, либо не обращается в ноль, и на концах одной из половин данного отрезка знаки функции f(x) противоположны. Выберем эту половину и обозначим ее через [a1, b1]. Заметим, что  f(a1) < 0,  f(b1) > 0. Разделим отрезок [a1, b1] пополам точкой . Тогда либо в этой точке функция f(x) обращается в ноль, и теорема доказана, либо не обращается в ноль, и на концах одной из половин отрезка  [a1, b1] знаки функции f(x) противоположны. Выберем эту половину и обозначим ее через [a2, b2]. Заметим, что  f(a2) < 0,  f(b2) > 0. Во втором случае процесс деления отрезка [a2, b2] пополам повторим.

В дальнейшем либо процесс прервется и мы найдем, что в одной из середин полученных отрезков функция обратиться в ноль, либо образуется бесконечная последовательность вложенных отрезков   

[a0, b0] [a1, b1] [an, bn]

Имеем f(an) < 0, f(bn) > 0. Длина n -го отрезка ln = bn - an = (b-a)/2n, ln  0 при n  .

По лемме Кантора точки an , bn  образуют две последовательности, сходящиеся к общему пределу

Так как  функция f(x) непрерывная, то {f(an)} f(c), {f(bn)} f(c) при n  .

Так как для любого nN  f(an) < 0,  f(bn) > 0, то по теореме о переходе к пределу под знаком неравенства получаем.

  1.  Следовательно, f(с) = 0. Так как f(a) f(b) < 0, то c (a, b)

Замечание 1. На рис. 1 показан график функции y = f(x), для которого выполняются условия теоремы 1. На рис. 2 показан график функции y = f(x), для которой не выполняются условие 1, и функция не обращается в ноль на интервале (a, b). На рис. 3 показан график функции y = f(x), для которой не выполняются условие 2, и функция f(x)  обращается в ноль на интервале (a, b).

 Теорема 2 (вторая теорема Больцано- Коши).  Пусть функция f(x)  определена и непрерывна на отрезке [a, b],  m = min { f(a), f(b)}, M = max { f(a), f(b)}. Тогда для любого C (m, M) существует такая точка c (a, b), что f(c) = C..

Доказательство.  Рассмотрим функцию g(x) =  f(x) - C.  Функция g(x) определена и непрерывна на [a, b],  как разность двух непрерывных на [a, b] функций. Так как m < C < M, то

g(a) g(b) = (f(a) - C)( f(b) - C) = (m - C)(M - C) <0.

 Тогда по теореме 1 существует такая точка c (a, b), что g(с) = 0. Отсюда f(с) - C = 0 и f(с) = C. 

Замечание 1. На рис. 4 показан график функции y = f(x), для которого выполняются условия теоремы 1. На рис. 2 показан график функции y = f(x), для которой не выполняются условие непрерывности, и функция f(x) не принимает на интервале значения С (f(a), f(b)) .

  1.  Теоремы об ограниченности и существовании наибольшего и наименьшего значений функций непрерывных на отрезке (первая и вторая теоремы Вейерштрасса).

Теорема 1 (первая теорема Вейерштрасса).  Пусть функция f(x)  определена и непрерывна на отрезке [a, b]. Тогда функция ограничена на отрезке [a, b].

Доказательство. Пусть для функции f(x) выполняются условия теоремы. Докажем, что функция f(x) ограничена на [a, b]. Допустим противное, что f(x) не ограничена на [a, b] сверху или снизу. Пусть для определенности функция f(x) не ограничена на [a, b] сверху. Тогда для любого n  N существует такое      xn [a, b], что f(xn) > n. Последовательность {xn}[a, b] ограничена. По теореме Больцано-Вейерштрасса выделим в ней сходящуюся подпоследовательность: c, где c [a, b].  Так как в точке c функция  f(x) непрерывна, то . Тогда последовательность  функция бесконечно малая при k  .  

Последнее невозможно, так как для любого k  N имеем  , то последовательность бесконечно большая при k  . Поэтому и последовательность бесконечно большая. Получаем противоречие, с доказанным ранее.  Поэтому функция f(x) ограничена сверху.

Аналогичным образом доказывается ограниченность функции f(x) снизу.

Теорема 2 (вторая теорема Вейерштрасса).  Пусть функция f(x)  определена и непрерывна на отрезке [a, b]. Тогда функция f(x) имеет наибольшее и наименьшее значения  на отрезке [a, b], т. е. функция f(x) достигает на отрезке [a, b] своей точной нижней или точной верхней грани.

.Доказательство. Пусть для функции f(x) выполняются условия теоремы. Точная нижняя и точная верхняя грани  множества значений функции f(x) на  [a, b] существуют по теореме о существования точных граней у ограниченного множества. Докажем, что функция f(x) достигает на отрезке [a, b] своей точной нижней или точной верхней грани

Допустим противное, что функция f(x) не достигает на отрезке  [a, b] своей точной нижней или точной верхней грани. Для определенности предположим, что для любого x [a, b] f(x) . Составим функцию . По условию M - f(x) > 0 для любого x [a, b].

Функция g(x) определена и непрерывна на [a, b].   Поэтому по теореме она ограничена на [a, b]. Поэтому существует такое число С>0, что для любого x [a, b]выполняется неравенство

.

Обе части неравенства положительны и из его получаем

.

Получаем, что число  является верхней гранью множества значений функции f(x) на  [a, b]. Последнее противоречит определению точной верхней грани. Полученное противоречие доказывает, что имеется такое число x [a, b], что  f(x) = M.

Аналогично доказывается, что функция f(x) достигает на отрезке  [a, b] своей точной нижней грани.

Замечание 1. На рис. 5 показан график функции y = f(x), которой точной нижней грани m в точке с[a, b], а точной верхней грани M в точке b.

На рис. 6 показан график функции y = f(x), для которой не выполняются условие непрерывности, и функция f(x) не достигает на отрезке [a, b] своей верхней и нижней граней.


Рис.
2.

b

y

O

y=f(x)

f(b)

Рис.3.

y

x

O

f(a)

y=f(x)

a

b

a

f(a)

f(b)

Рис.1.

y

x

O

y=f(x)

b

a

f(a)

f(b)

С

С

Рис.4.

y

x

O

y=f(x)

b

a

f(a)

f(b)

с

С

Рис.6.

y

x

O

y=f(x)

b

a

f(a)

f(b)

с

С

Рис.5.

y

x

O

y=f(x)

b

a

f(a)

f(b)

с

M

m

c


 

А также другие работы, которые могут Вас заинтересовать

54321. Створення та редагування таблиць із застосуванням режиму конструктора, використання звязків між таблицями, створення форм із застосуванням майстра форм, створення звітів із застосуванням майстра звітів 2.97 MB
  ЗАДАЧА: створити БД для підприємства (фірми), яке займається реалізацією продовольчих товарів. 1.1 Створити БД в папці Мої документи та надати ім’я «Прізвище_група_учня_фірма» 1 Створити таблиці, які будуть містити основну інформацію про діяльність фірми.
54322. Метод проектов 26.5 KB
  В последние годы в связи с реформами в образовании и изменениями в школьном математическом образовании в частности остро стоит вопрос об организации учебного процесса направленного на развитие творческих способностей личности и навыков исследовательской деятельности. В результате этого возник метод проектов как способ актуализации и стимулирования познавательной деятельности учащихся. Однако за последние несколько лет многое изменилось – общество поднялось на новую ступень экономического развития потребовались кардинальные перемены во...
54323. МЕТОД ПРОЕКТІВ ЯК ТЕХНОЛОГІЯ НАВЧАННЯ 257.5 KB
  Метод проектів це метод в основі якого лежить розвиток пізнавальних творчих навичок студентів умінь самостійно конструювати свої знання орієнтуватися в інформаційному просторі критично мислити. Мета застосування методу полягає у формуванні навичок ефективного використання різних джерел інформації при навчанні студентів за допомогою інноваційних педагогічних технологій якими передбачається самостійна індивідуальна чи групова дослідницькопошукова та творча діяльність студентів підвищення рівня комунікабельності. Завдання методу...
54324. З’єднання болтом і шпилькою 496 KB
  Оформлення завдання Завдання виконується на креслярському папері в олівці у відповідність з правилами ЕСКД. Креслення повинне мати основний напис. Діаметри крізних отворів
54325. МЕТОДИЧНІ РЕКОМЕНДАЦІЇ ДО СТВОРЕННЯ НАВЧАЛЬНОГО ПРОЕКТУ 146.5 KB
  АНАТОМІЯ НАВЧАЛЬНОГО ПРОЕКТУ. Планування реалізації проекту. Методика управління для неосяжної кількості найрізноманітніших проектів має єдину структуру у якій можна виділити такі групи процесів: ініціації прийняття рішення щодо запуску проекту зазвичай завершується складанням і затвердженням уставу проекту із визначенням його мети терміну виконання критеріїв успіху призначенням та чітким окресленням повноважень керівника проекту; планування безперервне визначення кращих...
54326. Особливості використання кейс-методу при викладанні інженерної графік 704.5 KB
  Наявність головної умови використання кейс-методу при викладанні будь–якої дисципліни – наявність протиріч, на основі яких формуються і формулюються проблемні ситуації, задачі, практичні завдання для обговорення та знаходження оптимального розвязання учнями або студентами.
54327. Методичні рекомендації щодо формування комунікативно-мовленнєвих умінь в учнів початкових класів на уроках української мови в російськомовних класах 367.5 KB
  Діти що приходять у 1 клас особливо російськомовні мають обмежений словниковий запас для спілкування українською мовою. Наприклад: ТВАРИНИ Ведмідь –медведь Лисиця – лисица Вовк – волк Заєць – заяц Білка – белка Їжак – ежик Мавпа – обезьяна Пташка – птичка Жаба – лягушка Ящірка ящерица Бобер бобёр Кажан – летучая мышь Паралельно з цією карткою діти працюють з карткою з малюнками на якій намальовані ті предмети які були записані в картці словами. Скажіть діти кого із названих членів сім'ї ви вдома називаєте не так Пропоную з...
54328. Метод проектів як основа творчого розвитку особистості 170.5 KB
  Практична теоретична пізнавальна значимість передбачуваних результатів наприклад доповідь у відповідні служби про демографічний стан даного регіону фактори що впливають на цей стан тенденції що просліджуються в розвитку даної проблеми; спільний з партнером по проекту випуск газети альманаху з репортажами з місця подій; охорона лісу в різних місцевостях план заходів і т. Структурування змістовної частини проекту із указівкою поетапних результатів. Але незалежно від типу проекту всі вони в означеній мірі неповторні та унікальні;...
54329. Групування, формули, адресація, імена комірок, авто заповнення в Microsoft Excel (MICROSOFT OFFICE 2010) 429 KB
  Мета: Навчитися обєднувати дані за природними групами, користуватися документом, в якому є групування, створювати в комірках формули для обчислення нових даних, копіювати дані та формули, призначати імена коміркам, користуватися автозаповненням.