22419

Производная и дифференциал функции одной переменной

Лекция

Математика и математический анализ

Производная и дифференциал функции одной переменной Приращение аргумента и приращение функции. Понятие функции дифференцируемой в точке. Дифференциал функции. Производная функции.

Русский

2013-08-03

224 KB

10 чел.

110100, 110600                                           Математика                                        Толстиков А.В.

Курс 1. Семестр 1. Лекция 17. Производная и дифференциал функции одной переменной

  1.  Приращение аргумента и приращение функции. Понятие функции, дифференцируемой в точке. Дифференциал функции. 
  2.  Производная  функции.
  3.  Механический и геометрический смысл производной. Геометрический смысл дифференциала.
  4.  Правила нахождения производной.
  5.  Производная сложной функции.
  6.   Производная обратной функции.
  7.  Таблица производных.

Литература: Ильин В.А., с.105-127;  Письменный Д., с. 130-135. Ермаков В.И., с.206-217. Архипов Г.И., Садовничий В.А., Чубариков В.Н. , с.98-108.  

  1.  Приращение аргумента и приращение функции. Понятие функции, дифференцируемой в точке. Дифференциал функции.

Пусть функция f определена в некотором интервале (a, b). Возьмем точки x, x0 (a, b). Разность x - x0 называется приращением аргумента x в точке x0 и обозначается символом x. Отсюда x = x0 +x.

Разность f(x) - f(x0) соответствующих значений функции называется приращением функции f(x) в точке x0 , соответствующим приращению аргумента x, или просто приращением функции.

Приращение функции зависит от точки x0 и от приращения аргумента x. Обозначается y, или f, или        f(x0), или  f(x0, x):

y = f(x) - f(x0) = f(x0 +x) - f(x0).

Определение 1. Функция f называется дифференцируемой в точке x0, если ее приращение в точке можно представить в виде

y = Ax + (x)x,                                                                 (1)

где A - постоянная, не зависящая от x, (x) - бесконечно малая при x 0.

Отметим, что постоянная A и бесконечно малая (x) зависят от x0. Определение 1 с использованием   символа о-малое может быть записано в виде:

y = Ax + о(x),                                                                 (1)

при x 0. Последнее равносильно эквивалентности

y  Ax                                                                           (2)

при x 0.

Теорема 1. Если функция f дифференцируемой в точке x0, то она непрерывна в точке x0.

Доказательство. Если функция f дифференцируема в точке x0,  то имеет место равенство (1). Откуда при x 0 получаем, что y 0. Тогда функция f непрерывна в точке x0.

Замечание. Обратное неверно. Например, функция y =x, непрерывна в точке x=0, но не дифференцируема в ней. Действительно, для функции

имеем y = x0 +x - x0. Отсюда при x= 0 имеем y = x - 0 =x. Тогда для x  0 получаем y= -x+0x и для x  0 получаем y= x+0x. Получили, что коэффициенты у главных частей приращения функции справа и слева от точки x =0 различны и функция y = x  не дифференцируема в точке 0.

Имеется пример функции, которая непрерывна но дифференцируема в любой точке числовой оси.

Пример 1. Рассмотрим функцию  y = x2. Тогда

y = f(x) - f(x0) = (x0 +x)2 - x0 2 = 2x0 x + xx  = 2x0 x + о(x).

Отсюда следует, что функция дифференцируема на всей числовой оси.

Определение 2. Пусть функция f дифференцируема в точке x0,. Дифференциалом приращения  f(x0), или дифференциалом функции f в точке x0 называется линейная часть Ax приращения функции f в точке x0.

Дифференциал функции f обозначается символом df, или df(x0). По определению дифференциала для дифференцируемой функции

df(x0) = Ax.

Дифференциал df(x) можно рассматривать как функцию, зависящую от x и x.

Так как приращение функции f(x) = x равно  f = x = 1x + 0x, то по определению дифференциала функции x = dx .

Пример 2. Дифференциал функции  y = x2  равен df(x) = 2x0 x = 2x0 dx.  

  1.  Производная  функции, ее смысл в различных задачах (механический и геометрический смысл производной). Геометрический смысл дифференциала.

Определение 1. Пусть функция f определена в некотором окрестности точки x0.  Производной функции f в точке x0 называется предел отношения приращения f(x0) функции f в точке x0 к соответствующему приращению аргумента x, если приращение аргумента x стремится к нулю.

Обозначается производная функции f(x0) символами

.

Тогда по определению

.                     (1)

 Теорема 1. Если функция f дифференцируемой в точке x0 тогда и только тогда, когда существует в точке x0 конечная производная, при этом коэффициент линейной части приращения функции равен f ' (x0) .

Доказательство. Необходимость. Пусть функция f дифференцируема в точке x0.  Тогда по определению приращение f(x0) функции f в точке x0 представляется в виде

f(x0) = Ax + (x)x,

где A - постоянная, не зависящая от x, (x) - бесконечно малая при x 0. Отсюда предел

существует, конечен и равен производной функции f  в точке x0, f ' (x0) = A.

Достаточность. Пусть функция f  в точке x0 имеет производную.  Тогда по определению производной существует конечный предел

.

По свойству предела функция бесконечно малая при  x 0. Отсюда

f(x0) = Ax + (x)x,

где A - постоянная, не зависящая от x, (x) - бесконечно малая при x 0. По определению функция f дифференцируема в точке x0.

По определению дифференциала из теоремы 1 получаем следующее следствие.

Теорема 2. Если функция f имеет в точке x0 производную, дифференциал функции f  в точке x0 находится по формуле:

df(x0) = f ' (x0)x = f ' (x0)dx.                                                               (2)

Из формул (1) первого параграфа получаем следующие формулы для приращения функции

f(x0) = f ' (x0)x + (x)x = f ' (x0)x + o(x)  f ' (x0)x,                                (3)

при x 0. Так как f(x) - f(x0) =f(x0),то 

f(x) = f(x0) + f ' (x0)x + (x)x = f(x0) +f ' (x0)x + o(x)  f(x0) + f ' (x0)x,                      (3) 

при x  x0. Последнюю формулу можно использовать для приближенного вычисления функции в точках, близких к точке x0.

Определение 2. Пусть функция f определена в левой половине некотором окрестности точки x0.  Левой производной функции f в точке x0 называется левый предел отношения приращения f(x0) функции f в точке x0 к соответствующему приращению аргумента x, если приращение аргумента x стремится к нулю слева.

Тогда по определению

.

Определение 3. Пусть функция f определена в правой половине некотором окрестности точки x0.  Правой производной функции f в точке x0 называется правый предел отношения приращения f(x0) функции f в точке x0 к соответствующему приращению аргумента x, если приращение аргумента x стремится к нулю ссправа

.

 Теорема 1. Если функция f дифференцируемой в точке x0 тогда и только тогда, когда существует в точке x0 конечная производная, при этом коэффициент линейной части приращения функции равен f ' (x0) .

Доказательство. Необходимость. Пусть функция f дифференцируема в точке x0.  Тогда по определен

3. Механический и геометрический смысл производной. Геометрический смысл дифференциала.

Определение 1.  Углом наклона прямой, лежащей на координатной плоскости Oxy, называется угол, который образует прямая с положительным направлением оси Ox (оси абсцисс).

Определение 2. Угловым коэффициентом прямой, лежащей на координатной плоскости Oxy, и неперпендикулярной оси Ox, называется тангенс угла наклона этой прямой.

 Определение 3. Касательной к графику функции y = f(x) в точке (x0 , f(x0)) координатной плоскости Oxy называется такая прямая, проходящая через эту точку (x0 , f(x0)), угловой коэффициент которой равен пределу тангенса угла наклона секущей  (прямой), проходящей через две точки (x0 ,

f(x0)) и (x0+x,  f(x0 +x)), при x 0.

Другими словами можно дать следующее определение касательной.

Определение 3'.  Касательной к графику функции y = f(x) в точке P(x0 , f(x0)) координатной плоскости Oxy, называется прямая, проходящая через точку (x0 , f(x0)), которая является предельным положением секущей PQ, когда точка Q по графику функции f стремится к точке P.

По определению углового коэффициента k касательной получаем, что

.

Поэтому получаем следующее:

Геометрический смысл производной. Производная f ' (x0) функции y = f(x) в точке x0  есть угловой коэффициент касательной  к графику функции y = f(x) на координатной плоскости Oxy в точке (x0 , f(x0)).

Уравнение прямой с угловым коэффициентом k, проходящей через точку (x0 , y0) имеет вид:

y =  k(x- x0) + y0.

Из сказанного выше и отсюда получаем уравнение касательной к графику дифференцируемой функции y = f(x) в точке (x0 , f(x0)):

y = f ' (x0) (x- x0) + f  (x0).

Механический смысл производной.  Пусть t - текущее время, s(t) - путь, пройденный телом за время   t - t 0 , t 0  начало отсчета. Тогда s(t) - путь, пройденный телом за время от t до t + t, т.е.

s(t) = s(t +t) - s(t ).

Отношение

есть средняя скорость тела за время  [t, t + t]. Предел средней скорости при y 0 мгновенная скорость тела в момент времени t. Таким образом, производная s' (t ) от пути по времени есть мгновенная скорость тела во момент времени t.

Аналогично можно показать, что ускорение тела в момент времени есть производная от скорости по времени.

 Геометрический смысл дифференциала. Пусть функция функции y = f(x) дифференцируема в точке x0 . Тогда существует касательная, проведенная к графику функции y = f(x) в точке   (x0 , f(x0)). Угловой коэффициент касательной равен тангенсу угла наклона касательно. Уравнение касательной есть

y = f ' (x0) (x- x0) + f  (x0).

Тогда приращение графика касательной, соответствующей приращению аргумента x= x- x0 равно:

f ' (x0) (x- x0) + f  (x0) -  f  (x0) = f ' (x0) (x- x0) = f ' (x0)x = d f (x0).

Следовательно, геометрический смысл дифференциала функции есть приращение графика касательной, соответствующего приращению аргумента x.

4.  Правила нахождения производной и дифференциала.

Теорема 1. Пусть функции f(x) и g(x) дифференцируемы в точке x0, c R. Тогда справедливы формулы

1) (c ) - производная постоянного равна нулю;

2) (c f(x)) = c f ' (x) - постоянный множитель можно выносить за знак производной;

3) (f(x) g(x)) = f ' (x) g' (x)- производная от суммы разности функций равна соответственно сумме разности этих производных этих функций;

4) (f(x) g(x)) = f ' (x)g (x) +  f(x)g' (x) - производная от суммы разности функций равна соответственно сумме разности этих производных этих функций;

5) .

6) .

Доказательство. 1. По определению производной имеем

2. Пусть f(x) = с - константа. По определению производной имеем

3. По определению производной имеем

При выводе последней формулы учитывается, что функция f(x) непрерывна в точке x, g (x+x) g (x) при x 0.

4. По определению производной имеем

5. По доказанным свойствам имеем

.

Следствие. Для любых дифференцируемых в точке функций f1, f2,…, fn справедлива формула

.

5.  Производная сложной функции.

Теорема 1. Пусть функции g(x) дифференцируема в точке x0, причем g(x0) = y0 , g' (x0) = A. Далее пусть функция f(y) дифференцируема в точке y0, причем f ' (y0)= B. Тогда сложная функция F(x) = f(g(x)) дифференцируема в точке x0, причем  

F ' (x0) = BA,

т.е. справедлива формула

F ' (x0) = f ' (g(x0)) g' (x0).                                                                             (1)

Доказательство. Так как функция g(x) дифференцируема в точке x0, функция f(y) дифференцируема в точке y0 , то имеют место формулы

g(x0) = Ax + (x)x,

f(y0) = By + (y)y,

где (x)- бесконечно малая при x 0, (y) - бесконечно малая при y 0, A = g' (x0), B =f ' (y0), (0) = 0, (0) = 0.

Полагаем во втором равенстве y = g(x0). Тогда получим

f(y0) = Bg(x0) + (g(x0)) g(x0) = B( Ax + (x)x) + (g(x0)) (Ax + (x)x) =

B Ax + (B (x) + A(g(x0))+ (x) (g(x0))) x.

Так как f(y0) = F(x0), то

F(x0) = B Ax + (x)x,

где

(x) = B (x) + A(g(x0))+ (x) (g(x0)).

Так как  функция g(x) дифференцируема в точке x0, то она непрерывна в точке. Поэтому g(x0))0 при x 0. Тогда по теореме о пределе сложной функции  (g(x0) - бесконечно малая при x 0. Кроме того (x)- бесконечно малая при x 0. Следовательно, по свойству бесконечно малых (x) - бесконечно малая при x 0. Тогда по определению функция F(x) = f(g(x)) дифференцируема в точке x0, и по теореме 1 второго пункта F ' (x0) = BA. 

6. Производная обратной функции.

Теорема 1. Пусть функции f(x) определена и непрерывна на отрезке [a, b], имеет на [a, b] обратную функцию g(y), определенную на отрезке I, концами которого являются числа f(a) и f(b). Пусть далее x0 - внутренняя точка отрезка [a, b], y0 внутренняя точка отрезка I, причем f (x0) = y0, g(y0) = x0. Далее, если функция f(x) дифференцируема в точке x0, и f ' (x0)= B, то обратная  функция g(y) дифференцируема в точке y0, и справедлива формла

  .

Доказательство. Так как для функции f(x) существует обратная функция, то функция f(x) является биекцией и поэтому функция f(x) строго монотонная на [a, b]. По теореме об обратной функции функция g(y) непрерывна и строго монотонна на I. По определению производной

если предел существует. В силу непрерывности функции f (x) в точке и по теореме о пределе обратной функции имеем g(y)g(y0) = x0 при yy0.  По определению обратной функции имеем g (y0) = x0, f (x0)= y0 . Полагаем x  = g (y). Тогда y = f(x) для любых x [a, b]. Таким образом, 

.

Таким образом, .

  1.  Таблица производных.

Вычислим производные элементарных функций, входящих в таблицу.

  1.  Производная степенной функции с натуральным показателем

  1.  Производная корня с натуральным показателем.

Функция  является обратной функцией для функции y =xn. Поэтому

.

Проводя замену переменных y x, x y получаем формулу .

  1.  Производная степенной функции с отрицательным целым показателем m=-n., nN.

  1.  Производная функции ex .

  1.  Производная показательной функции ax .

  1.  Производная функции ln x .

Функция  является обратной функцией для функции y =ex. Поэтому

.

Проводя замену переменных y x, x y получаем формулу .

  1.  Производная функции loga x .

  1.  Производная степенной функции с действительным показателем x .

  1.  Производные тригонометрических функций.

10. Производные обратных тригонометрических функций. Функция  является обратной функцией для функции y =sin x , ex. Поэтому

.

Проводя замену переменных y x, x y получаем формулу .

Аналогично находятся производные для всех остальных обратных тригонометрических функций.

  1.  Производная для гиперболического синуса и косинуса находятся легко из их определений

Далее приведены таблица производных основных элементарных функций, таблица сложных функций, полученных из элементарных подстановкой x  u (u - функция) и таблица дифференциалов.

Таблица производных

Таблица производных сложных функций

Таблица дифференциалов


Рис.
1.

y

x

O

x0

=f(x)

f(x0)

x0+x

A-

y

x

f(x0+x)

Рис.2.

y

x

O

x0

Рис.3.

y

x

O

x0

y=f(x)

f(x0)

x0+x

y

x

f(x0+x)

P

Q

B

C

Рис.4.

y

x

O

x0

y=f(x)

f(x0)

x0+x

y

x

f(x0+x)

P

Q

B

C

Рис.5.

y

x

O

x0

y=f(x)

f(x0)

x0+x

A-

y

x

f(x0+x)

P

A

B

C

df


 

А также другие работы, которые могут Вас заинтересовать

25509. Направления семейного воспитания (физическое, трудовое, нравственное, умственное, эстетическое) 14.12 KB
  Направление семейного воспитания Цель задачи содержание ЧТО воспитываем формируем Методы формы реализации КАК воспитываем формируем СредстваС ПОМОЩЬЮ ЧЕГО воспитываем формируем Физическое: Цели задачи  укрепление здоровья содействие физическому развитию и закаливанию детей;  совершенствование у детей умений и навыков в естественных видах движений;  привитие интереса и привычки к занятиям физической культуры и спорта. Методы: 1УГГутренняя гигиенич. Среда:  Физические упражнения  Оздоровительные силы природы  Гигиенические...
25510. Неполная семья 13.95 KB
  В больших семьях с их богатыми внутренними связями возможно перераспределение возникающих напряжений а в диадических мать ребенок отец ребенок любое событие может приобретать преувеличенное значение. Такая мать а иногда это может быть и отец очень болезненно воспринимает неизбежный кризис в своих взаимоотношениях с подростком когда первоначальный эмоциональный альянс разрушается. Это происходит в том случае если мать находится от него в сильной эмоциональной зависимости и начинает тяжело переживать его первые шаги в самостоятельной...
25511. Нормативно правовая основа реализации государственной политики в отношении молодых семей 18.2 KB
  В нашей стране отсутствует четкая и единая согласованная политика в отношении молодой семьи а попытки ее выстраивания носят случайный характер. Однако в рамках государственной молодежной политики статус молодой семьи более определен. В отдельном отделе отражены меры по государственной поддержке молодой семьи: Предусмотреть для молодых семей льготы в выделении земельных участков для индивидуального жилищного строительства при предоставлении долгосрочных кредитов на строительство и приобретение жилых домов отдельных квартир для уплаты...
25512. Конструкционные материалы, обрабатываемые давлением. Свойства материалов 200 KB
  Диаграмма фазового равновесия (диаграмма состояния) железо-углерод (иногда говорят железо-цементит) — графическое отображение фазового состояния сплавов железа с углеродом в зависимости от их химического состава и температуры.
25513. Особенности межличностной коммуникации в молодой семье 14.23 KB
  Межличностное общение в семье является ключевым моментом ее жизнедеятельности. Задачи коммуникации: естественный обмен информации согласование усилий выполнение ролей в совместной деятельности установление и развитие межличностных отношений познание партнёра и самопознание Особенностью межличностной коммуникации в семье является высокая эмоциональная насыщенность и интенсивность общения. В работах Петровской андреевой Сатир Роджерса Гордона и других выделены условия эффективного межличностного общения в семье: 1 открытость 2 высокая...
25515. планирование семьи появился в XX веке когда проблемой и процессом выбора числа детей в семье и времени их ро. 24.2 KB
  Деятельность служб планирования семьи. В широком смысле под планированием семьи понимается совокупность социальноэкономических правовых медицинских педагогических мероприятий направленных на рождение желанных детей воспитание в обществе культуры осознанного родительства достижение гармонии в браке поддержание репродуктивного здоровья населения. Термин планирование семьи появился в XX веке когда проблемой и процессом выбора числа детей в семье и времени их рождения управлять стало максимально возможно.
25516. Повторный брак 19.19 KB
  Во втором типе брака психологические проблемы могут возникать при отказе детей признать право отчима на полноправное место в структуре семейных отношений. Он может восприниматься ими как незваный гость отнимающий у детей часть материнского времени и любви. Жена начинает чувствовать себя обиженной и раздраженной когда новый муж позволяет себе критиковать ее детей. Она называет семью созданную мужчиной и женщиной имеющих детей от первого брака смешанной семьей.
25517. Половое воспитание в России: история и современное состояние 24.69 KB
  Кроме того по решению Министерства просвещения СССР с 1983 года в программы школ страны были введены обязательные курсы Гигиеническое и половое воспитание 8 кл. В постсоветский период начинают распространяться различного рода программы сексуального просвещения. Появляются всё новые и новые фантастические программы оздоровления психического совершенствования эстетического развития и т. Возникла потребность в переработки программы 1982 года по данному предмету.