22420

Теоремы о дифференцируемых функциях. Производные и дифференциалы высших порядков

Лекция

Математика и математический анализ

Производные и дифференциалы высших порядков Возрастание и убывание функции в точке. Точки экстремума функции. Линеаризация функции. Приближенное вычисление значений функции.

Русский

2013-08-03

246.5 KB

0 чел.

110100, 110600                                                  Математика                                        Толстиков А.В.

Курс 1. Семестр 1. Лекция 18. Теоремы о дифференцируемых функциях. Производные и дифференциалы высших порядков

  1.  Возрастание и убывание функции в точке.
  2.  Точки экстремума функции. Теорема Ферма.
  3.  Теорема Ролля.
  4.  Теорема Лагранжа и ее некоторые применения. Теорема Коши.
  5.  Инвариантность формы первого дифференциала. Геометрический смысл дифференциала. Линеаризация функции. Приближенное вычисление значений функции.
  6.  Дифференцирование функций, заданных параметрически и неявно.
  7.  Производные высших порядков. Дифференциалы высших порядков.

Литература: Ильин В.А., с.173-182, 251-261 ;  Письменный Д., с. 152-167. Ермаков В.И., с.218-230. Архипов Г.И., Садовничий В.А., Чубариков В.Н. , с. 109-125.  Мантуров О.В., Матвеев Н.М., с. 205-215, 421-426.   

  1.  Возрастание и убывание функции в точке.

Пусть внутренняя точка области определения функции f(x).

Определение 1. Функция f называется возрастающей в точке x0, если она возрастает в некоторой  - окрестности точки x0, т.е. для всех x U(x0,)  выполняется неравенства, если x <x0,, то f(x)< f(x0), если x >x0,, то f(x)> f(x0).

Легко проверить, что x0 является точкой возрастания функции f, тогда и только тогда, когда в некоторой окрестности точки x0 выполняется условие

.

Определение 2. Функция f называется убывающей в точке x0, если она убывает в некоторой  - окрестности точки x0, т.е. для всех x U(x0,)  выполняется неравенства, если x <x0,, то f(x)> f(x0), если x >x0,, то f(x)< f(x0).

Легко проверить, что x0 является точкой убывания функции f, тогда и только тогда, когда в некоторой окрестности точки x0 выполняется условие

.

Определение 3. Точка x0 называется точкой локального максимума функция f , если в некоторой выколотой - окрестности точки x0, выполняется неравенство f(x)< f(x0).

Определение 4. Точка x0 называется точкой локального минимума функция f , если в некоторой выколотой - окрестности точки x0, выполняется неравенство f(x)> f(x0).

Определение 5. Точка x0 называется точкой локального экстремума функция f , если она имеет в этой точке локальный максимум или минимум.

На рис.1 функция f возрастает в точке x3, убывает в точке x5. Точки x1 , x4 являются точками локального максимума, точка x2 - точкой локального минимума функции f.

Теорема 1 (лемма Дарбу- достаточное условие возрастания или убывания функции в точке). 1) Если функция f дифференцируема в точке x0  и f ' (x0) = c > 0, то точка x0 - точка возрастания функции f.

2) Если функция f дифференцируема в точке x0  и f ' (x0) = c < 0, то точка x0 - точка убывания функции f.

Доказательство. Так как

,

то существует такое число =(с/2)>0, что для всех x из проколотой - окрестности точки x0, выполняется неравенство

.

Для всех таких x имеем

.

Отсюда следует, что знаки f(x)- f(x0), x - x0,совпадают и функция возрастает в - окрестности точки x0.

Аналогично доказывается вторая часть теоремы.

  1.  Теорема Ферма.

Определение 1. Внутренняя точка x0 области определения функции f называется точкой несобственного локального максимума  функция f , если в некоторой выколотой - окрестности точки x0, выполняется неравенство f(x)< f(x0), т.е.  f(x0) = f(x)- f(x0) 0.

Определение 2. Внутренняя точка x0 области определения функции f называется точкой несобственного локального минимума  функция f , если в некоторой выколотой - окрестности точки x0, выполняется неравенство f(x) > f(x0), т.е.  f(x0) = f(x)- f(x0) 0.

Определение 5. Точка x0 называется точкой несобственного локального экстремума функция f , если она имеет в этой точке несобственный локальный максимум или минимум.

По определению все локальные экстремумы функции являются несобственными экстремумами, но обратное неверно.

Теорема 1 (теорем Ферма). Пусть функция f определена и непрерывна на отрезке [a, b], x0 -  внутренняя точка отрезка [a, b]. Если точка x0 является точкой экстремума функции f (собственного или несобственного) и функция f в точке x0 имеет производную, то f ' (x0) = 0. 

Доказательство. Пусть для определенности точка x0 несобственного локального максимума. Тогда в некоторой проколотой окрестности точки x0 выполняется неравенство  f(x0) = f(x)- f(x0) 0. Так как в левой половине окрестности  x = x - x0 <0,  а в правой - x = x - x0 > 0, то для любых x из левой половине окрестности и для любых x из правой половины окрестности точки x0 получим соответственно неравенства  

.

Переходя в этих неравенствах к пределу при x 0 получим по определению производной, c одной стороны,  f '(x0)0, a с другой стороны f '(x0)0. Так как эти пределы равны, то выводим f '(x0) = 0.

Аналогично доказывается и случай, когда x0 - точка несобственного локального минимума

Замечания. 1. Из теоремы, следует, что если функция имеет в точке локальный несобственный экстремум, то касательная к графику функции в точке параллельна оси абсцисс ( см. рис. 1).

  1.  Теорема Ролля.

Теорема 1 (теорем Ролля). Пусть для функция f(x) выполняются условия:

  1.  функция f(x) определена и непрерывна на отрезке [a, b],
  2.  функция f(x) дифференцируема во всех точках интервала (a, b);
  3.  функция f(x) на концах отрезка [a, b] принимает одинаковые значения, т.е. f(a)= f(b).

Тогда на интервале (a, b) существует такая точка с, в которой f ' (с) = 0.

Доказательство. Так как функция f(x) непрерывна на отрезке [a, b],  то она принимает на этом свое наибольшее значения. Тогда найдется такая точка x1 [a, b], в которой функция f(x) принимает наибольшее значение, и найдется такая точка x2 [a, b], в которой функция f(x) принимает наименьшее значение.

Если x1 = x2, то  наибольшее и наименьшее значения функции f(x) совпадают и функция f(x) - постоянная на отрезке  [a, b] и в любой точке с отрезка [a, b] имеем f ' (с) = 0.

Если x1  x2, то  либо f(x1) либо f(x2) не равно f(a)= f(b). Тогда та точка, для которой равенство не имеет смысла внутренняя точка отрезка [a, b] и одновременно является точкой локального экстремума функции f(x). Тогда эту точку обозначаем через с и по теореме Ферма для ее имеем f ' (с) = 0.

Замечание. Теорема Ролля иллюстрируется на рис. 2. Геометрически она обозначает, что при выполнении условий 1-3 теоремы, существует такая точка  с интервала (a, b), что касательная, проведенная к графику функции f(x) в точке с параллельна оси Ox. На рис. 3 приведены графики трех функций, ля каждой из которых одно из условий теоремы Роля нарушается и заключение теоремы неверно (нет точек интервала (a, b) касательные в них параллельной оси Ox). Поэтому все три условия, входящие в теорему Ролля, существенны.

  1.  Теорема Лагранжа и ее некоторые применения. Теорема Коши

Теорема 1 (теорем Лагранжа). Пусть для функция f(x) выполняются условия:

  1.  функция f(x) определена и непрерывна на отрезке [a, b],
  2.  функция f(x) дифференцируема во всех точках интервала (a, b).

Тогда на интервале (a, b) существует такая точка с, в которой имеет место равенство

f(b) - f(a) =  f ' (с) (b - a).                                                                                (1)

Доказательство. Рассмотрим новую функцию

.

Для функции выполняются все три условия теоремы Ролля: функция F(x) определена и непрерывна на отрезке    [a, b]; функция F(x) дифференцируема во всех точках интервала (a, b); функция F(x) на концах отрезка [a, b] принимает одинаковые значения,

.

Тогда  по теореме Ролля найдется такая точка с(a, b),  что F ' (с)=0. Имеем

.

Тогда в точке с имеем

 

Теорема Коши является обобщением теоремы Лагранжа.

Теорема 1 (теорем Коши). Пусть для функций f(x) и g(x) выполняются условия:

  1.  функции f(x) и g(x) определены и непрерывны на отрезке [a, b],
  2.  функции f(x) и g(x) дифференцируемы во всех точках интервала (a, b), и g' (x)0 для всех точек x (a, b).

Тогда на интервале (a, b) существует такая точка с, в которой имеет место равенство

.                                                                              (1)

Доказательство. Рассмотрим новую функцию

.

Для функции выполняются все три условия теоремы Ролля: функция F(x) определена и непрерывна на отрезке    [a, b]; функция F(x) дифференцируема во всех точках интервала (a, b); функция F(x) на концах отрезка [a, b] принимает одинаковые значения,

.

Тогда  по теореме Ролля найдется такая точка с(a, b),  что F ' (с)=0. Имеем

.

Так как g' (с)0, то в точке с имеем

  1.  Инвариантность формы первого дифференциала. Геометрический смысл дифференциала. Линеаризация функции. Приближенное вычисление значений функции.

Функция f называется дифференцируемой в точке x0, если ее приращение в точке можно представить в виде

y = Ax + (x)x,                                                                           (1)

где A - постоянная, не зависящая от x, (x) - бесконечно малая при x 0. Дифференциалом приращения  f(x0), или дифференциалом функции f в точке x0 называется линейная часть Ax приращения функции f в точке x0.

Дифференциал функции f обозначается символом df, или df(x0). По определению дифференциала для дифференцируемой функции

df(x0) = Ax.

Имеет место теорема.

Теорема 1. Если функция f имеет в точке x0 производную, дифференциал функции f  в точке x0 находится по формуле:

df(x0) = f ' (x0)x = f ' (x0)dx.                                                               (1)

Пусть функция y = F(x) = f(g(x)) - сложная функция, полученная из функций y = f(u), u = g(x). Тогда имеет место теорема

Теорема 2. Пусть функции g(x) дифференцируема в точке x0, причем g(x0) = y0 , g' (x0) = A. Далее пусть функция f(y) дифференцируема в точке y0, причем f ' (y0)= B. Тогда сложная функция F(x) = f(g(x)) дифференцируема в точке x0, причем  

F ' (x0) = BA,

т.е. справедлива формула

F ' (x0) = f ' (g(x0)) g' (x0).                                                                             (2)

Из этих двух теорем получаем, что

dy = dF(x) = F ' (x0) dx = f ' (g(x0)) g' (x0) dx

Так как g(x0) = u0, g' (x0) dx = du, то получаем

dy = f ' (g(x0)) g' (x0) dx = f ' (u0) du.

Получили, что дифференциал функции y = f(u) при u = g(x) равен производной функции f по переменной u, умноженный на дифференциал переменной u. Это справедливо при любом выборе функции u = g(x). Таким образом первый дифференциал не зависит от того является переменная u независимой или функцией. Таким образом имеет место формула

d f (g(x) = f ' (g(x)) g' (x) dx.

Пусть функция функции y = f(x) дифференцируема в точке x0 . Тогда существует касательная, проведенная к графику функции y = f(x) в точке   (x0 , f(x0)). Угловой коэффициент касательной равен тангенсу угла наклона касательно. Уравнение касательной есть

y = f ' (x0) (x- x0) + f  (x0).

Тогда приращение графика касательной, соответствующей приращению аргумента x= x- x0 равно:

 f ' (x0) (x- x0) + f  (x0) -  f  (x0) = f ' (x0) (x- x0) = f ' (x0)x = d f (x0).

Следовательно, геометрический смысл дифференциала функции есть приращение графика касательной, соответствующего приращению аргумента x.

Уравнение касательной к графику дифференцируемой функции y = f(x) в точке (x0 , f(x0)):

y = f ' (x0) (x- x0) + f  (x0).

Касательная к графику функции является более простой линией, чем график функции. Касательная, в точках близких к точке касания (x0 , f(x0)) хорошо приближается к графику функции y = f(x) и отражает поведение функции в достаточно малой окрестности точки касания. Иногда можно заменить исследование функции исследованием касательной. Так как касательная к графику функции является линейной функцией, то такая замена называется линеаризацией.  Таким в окрестности точки x0 имеет место приближенное равенство

 f  (x)  f ' (x0) (x- x0) + f  (x0).                                                                         (1)

Смысл этого равенства следует из определения дифференцируемой функции

 f  (x0) = f  (x) - f  (x0) = f ' (x0)x + о(x).

Формула (1) используется для приближенного вычисления значения функции f  (x) в окрестности точки x0 .

Пример 1. Вычислить . Рассмотрим функцию f  (x)=  . Вычисляем  . 

  1.  Дифференцирование функций, заданных параметрически и неявно.

Пусть зависимость между двумя переменными x и y задана параметрически в виде двух уравнений

                                                                                       (1)

где t- вспомогательная переменная - параметр. Найдем производную функции  y по переменной x, предполагая, что обе функции дифференцируемы и функция имеет обратную функцию . Тогда сложная функция и по правилу дифференцирования сложной функции находим

.

Так как функция дифференцируемы и имеет обратную функцию , то по правилу дифференцирования обратной функции имеем

.

Тогда из указанных двух формул получаем

.                                                 (2)

Пример 1. Вычислить производную функции , заданной параметрически

Так как , то по формуле (2) имеем

.

Если функция задана уравнением вида , то говорят, что она задана в явном виде.

Пусть зависимость между двумя переменными x и y задана уравнением вида

,                                                                                    (3)

если при подстановке функции в это уравнение вместо x, получается тождество  по переменной x, определенное на некотором множестве, то говорят, что функция задана неявно уравнением (3). Если функция задана уравнением вида , то говорят, что она задана в явном виде.

Если функция задана неявно уравнением (2), то для нахождения производной  достаточно это уравнение продифференцировать по x, считая  y функцией от x. После этого полученное уравнение необходимо разрешить относительно .

Пример 2. Вычислить производную функции , заданной неявно уравнением

Продифференцируем это уравнение по x, считая  y функцией от x.

,

Полученное уравнение разрешая относительно находим.

.

  1.  Производные высших порядков. Дифференциалы высших порядков.

Производная   дифференцируемой на некотором множестве функции  называется производной первого порядка.

Если функция  дифференцируема на некотором множестве, то ее производная называется производной второго порядка и обозначается символом  или   .

Если функция  дифференцируема на некотором множестве, то ее производная называется производной третьего порядка и обозначается символом  или   .

Производной  n - го порядка называется производная от производной (n -1) - го порядка:

.

Производные второго порядка и выше называются производными высших порядков.

Пример 1. Вычислить производную третьего порядка от функции . По таблице производных вычисляем

Механический смысл производной второго порядка. Пусть по прямой движется точка по закону s = s(t). Производная s' = s' (t). равна скорости точки в момент времени t.

Пусть в моменты времени t и t + t скорости точки соответственно равны v и v. За время t скорость изменилась на величину v. Отношение называется средним ускорением точки за время t . Предел этого отношения при называется ускорением точки в момент времени t. Таким образом ускорение точки равно .

Таким образом механическим смыслом производной второго порядка от пути s(t). по времени t является ускорением прямолинейного движения точки.

Пусть зависимость между двумя переменными x и y задана уравнением вида

.                                                                                    (4)

Если функция задана неявно уравнением (2), то для нахождения производной  достаточно это уравнение (4) продифференцировать дважды по x, считая  y функцией от x. После этого в полученное уравнение поставляется . Аналогично находят производные третьего порядка и выше.

Пример 1. Вычислить производную третьего порядка от функции . Дифференцируем это уравнение дважды по по x, считая  y функцией от x 

Пусть зависимость между двумя переменными x и y задана параметрически в виде двух уравнений

                                                                                       (1)

где t- вспомогательная переменная - параметр. Первая производная функции  y по переменной x находится по формуле:

.

Найдем вторую производную от этой функции. Имеем

.

Пусть - дифференцируемая функция, аргумент x - независимая переменная. Тогда его первый дифференциал   есть функция от x и можно найти дифференциал этой функции. Этот дифференциал называется дифференциалом  второго порядка и обозначается символом  или   . По определению

.

Так  не зависит от х то считаем его при дифференцировании постоянным. Найдем формулу для дифференциала второго порядка.

.

Если функция  дифференцируема на некотором множестве, то дифференциалом третьего порядка называется дифференциал от дифференциала второго порядка. Аналогично указанному выше находим

.

.

дифференциалом   n - го порядка называется дифференциал от дифференциала (n -1) - го порядка:

.

Дифференциалы второго порядка и выше называются дифференциалами высших порядков.

Все указанные выше формулы справедливы только в том случае, когда х независимая переменная. Если х зависимая переменная, то формулы не имеют места. Дифференциалы второго и более высоких порядков не обладают свойством инвариантности и вычисляются по другим формулам.

Пример 1. Найти  , если .

Если бы было справедливо свойство инвариантности второго дифференциала, то мы бы получили

.

Это показывает, что дифференциалы второго порядка не обладают свойством инвариантности.


Рис. 1

x2

x1

O

x

x5

x4

x3

y=f(x)

Рис. 2

b

x1

O

y

x

b

a

c

y=f(x)

Рис. 3

a

O

y

x

y=f(x)

b

a

O

y

x

b

a

O

y

x

y=f(x)

y=f(x)

x5

df

C

B

A

P

f(x0+x)

x

y

A-

x0+x

f(x0)

y=f(x)

x0

O

x

y

Рис.2.


 

А также другие работы, которые могут Вас заинтересовать

78262. Гемолитическая болезнь плода и новорожденного 128 KB
  Гемолитическая болезнь плода и новорожденного это изоиммунная гемолитическая анемия возникающая в случае несовместимости крови матери и плода по эритроцитарным антигенам когда антигеном являются эритроциты плода а антитела вырабатываются в организме матери. Чаще всего это заболевание развивается при несовместимости крови матери и плода по резусантигену и встречается с частотой 1 случай на 200250 родов. Несовместимость по антигенам АВ0 приводящая к гемолитической болезни обычно развивается при группе крови матери I и группе крови...
78263. Перинатальное поражение центральной нервной системы 132 KB
  Среди причин перинатальных поражений мозга ведущее место занимает внутриутробная и интранатальная гипоксия плода. После отхождения околоплодных вод плод испытывает неравномерное давление которое приводит к расстройствам микроциркуляции в предлежащей части и к механическому повреждению тканей мозга плода в родах. Непосредственной причиной возникновения родовой травмы головного мозга является несоответствие размеров костного таза матери и головы плода. Родовая травма головного мозга и гипоксия патогенетически связаны друг с другом и обычно они...
78264. Рахит у детей 138 KB
  Главное значение в этиологии заболевания имеет недостаточное поступление в организм ребенка витаминов группы D а также группы B B1 B2 B6 аскорбиновой кислоты витамина солей кальция фосфора магния и других микроэлементов белка и отдельных аминокислот в периоды внутриутробного и постнатального развития. Эндогенным фоном предрасполагающим к рахиту является свойственная растущему организму высокая скорость перемоделирования и роста скелета особенно в 1ый год жизни и обусловленная этими процессами большая потребность в солях...
78265. Аномалии конституции. Спазмофилия. Гипервитаминоз D у детей 137 KB
  Наличие у ребенка определенного типа диатеза еще не означает что он обречен на ту или иную патологию к которой он предрасположен потому что именно у детей по мере созревания физиологических барьеров а также профилактических мероприятий давление наследственных факторов может ослабнуть. Аллергическое поражение кожи у детей первых 3х месяцев жизни раньше рассматривали как экссудативнокатаральный диатез. Этот диатез встречается у 50 детей первых 2х лет жизни. ткани этих детей повышенно гидрофильны и одновременно гидролабильны.
78266. Гнойно-воспалительные заболевания у детей 164 KB
  В этих случаях с момента рождения у ребенка могут выявляться такие заболевания как везикулопустулез пузырчатка внутриутробная пневмония менингит сепсис и др. Однако основным путем является инфицирование ребенка после рождения. При необильном высыпании общее состояние ребенка не нарушено аппетит сохранен температура тела нормальная и реже субфебрильная а при обильном высыпании появляются симптомы интоксикации. Пузырчатка новорожденного Она развивается чаще в первые 2 недели жизни ребенка.
78267. Острые пневмонии у детей 135 KB
  Некоторые из них в том числе острые пневмонии являются одной из причин смертности детей в раннем возрасте хотя от пневмоний дети не должны умирать. Дети в этом возрасте длительное время находятся в горизонтальном положении что приводит к застою кровообращения в задненижних отделах легких и к более легкому возникновению пневмонии. Возникновению пневмонии способствуют также другие факторы а именно: несоблюдение эпидемиологического режима то есть инфицирование ребенка; неполноценное питание и плохой уход; охлаждение или перегревание...
78268. НИВЕЛИРОВАНИЕ. ГЕОМЕТРИЧЕСКОЕ НИВЕЛИРОВАНИЕ 27.54 KB
  Одиночные ходы и системы ходов должны опираться не менее чем на два исходных пункта. Проложение замкнутых ходов опирающихся на один исходный пункт допускается лишь при особой необходимости. При приложении нивелирных ходов для определения высот пунктов аналитических сетей относительно исходной основы со средними квадратическими погрешностями...
78269. Тахеометрическая съемкаемка 9. 163.31 KB
  При производстве тахеометрической съемки используют геодезический прибор тахеометр предназначенный для измерения горизонтальных и вертикальных углов длин линий и превышений. Для выполнения тахеометрической съемки используются также тахеометры с номограммным определением превышений и горизонтальных проложений линий. Производство тахеометрической съемки Тахеометрическая съемка выполняется с пунктов съемочного обоснования их называют станциями.
78270. Состав камеральных работ 166.31 KB
  Стороны угла проектируют на лимб с использованием подвижной визирной плоскости зрительной трубы. Она образуется визирной осью трубы при её вращении вокруг горизонтальной оси. Данную плоскость поочередно совмещают со сторонами угла ВА и ВС последовательно направляя визирную ось зрительной трубы на точки А и С...