22421

Правила Лопиталя. Формула Тейлора

Лекция

Математика и математический анализ

Формула Тейлора. Формула Тейлора с остаточным членом в форме Пеано. Формула Тейлора с остаточным членом в форме Лагранжа. Разложение основных элементарных функций по формуле Тейлора.

Русский

2013-08-03

245 KB

21 чел.

Лекция 9. Правила Лопиталя. Формула Тейлора.

  1.  Первое правило Лопиталя.
  2.  Второе паравило Лопиталя.
  3.  Применение правил Лопиталя при раскрытии неопределенностей.
  4.  Формула Тейлора с остаточным членом в форме Пеано.
  5.  Формула Тейлора с остаточным членом в форме Лагранжа.
  6.  Разложение основных элементарных функций по формуле Тейлора.

  1.  Первое правило Лопиталя.

Теорема 1 (первое правило Лопиталя - неопределенность ). Пусть

  1.  функции  f(x) и g  (x) определены и дифференцируемы в некоторой выколотой 1 - окрестности точки а ;
  2.  
  3.   g ' (x) 0 при всех x из некоторой выколотой 2 - окрестности точки а;
  4.  существует конечный или бесконечный предел отношения  при x  a, т.е. существует предел . 

Тогда существует предел отношения при x  a и имеет место равенство.

Доказательство. Докажем теорему, используя определение Гейне. Пусть {xn}- произвольная последовательность значений аргумента, сходящаяся к  a. Так как все члены последовательности {xn} начиная с некоторого места принадлежат  -окрестности точки a, где = min{1, 2}, то будем предполагать, что все члены последовательности {xn} принадлежат этой -окрестности. Доопределим f(x) и g (x)  в точке x = a, полагая f(a) = 0 и g  (a) = 0. Тогда функции f(x) и g (x) будут непрерывны в точке x = a, по условия функции f(x) и g(x) дифференцируема на интервале In с концами xn и a . Тогда по теореме Коши найдется такая точка n In , что выполняется равенство

                                                           (1).

Пусть в формуле (1) n  . Так как xn   а и n находится между а и xn, то n   а. Так как предел   существует и равен l, то предел . Следовательно, . Так как это справедливо для любой последовательности {xn}, сходящаяся к  a, то по определению предела по Гейне получаем.

Замечание 1. Первое правило Лопиталя имеет место и для правого и левого пределов как в конечной так и в бесконечных точках.

 Замечание 2. Первое правило Лопиталя можно применять несколько раз при условии, что последний предел существует и при каждом переходе выполняются условия теоремы 1.

Пример.

.

  1.  Второе правило Лопиталя.

Теорема 1 (первое правило Лопиталя - неопределенность ). Пусть

  1.  функции  f(x) и g  (x) определены и дифференцируемы в некоторой выколотой 1 - окрестности точки а ;
  2.  
  3.   g ' (x) 0 при всех x из некоторой выколотой 2 - окрестности точки а;
  4.  существует конечный или бесконечный предел отношения  при x  a, т.е. существует предел . 

Тогда существует предел отношения при x  a и имеет место равенство.

Доказательство. Доказательство. Докажем теорему, используя определение Гейне. Пусть {xn}- произвольная последовательность значений аргумента, сходящаяся к  a слева (или справа). Так как все члены последовательности {xn} начиная с некоторого места принадлежат  -окрестности точки a, где = min{1, 2}, то будем предполагать, что все члены последовательности {xn} принадлежат этой -окрестности. Пусть xn и xm два произвольные члена последовательности с достаточно большими номерами с условием n > m. Тогда функции f(x) и g (x) будут функции f(x) и g(x) дифференцируема на интервале In с концами xn и xm . Тогда по теореме Коши найдется такая точка nбь In , что выполняется равенство

 .                                                          (1).

Отсюда

.                                                                       (2)

Пусть в формуле (2) n, m  . Так как xn xm   а и n,m находится между xn и xm, то n,m   а при n, m  .. Так как предел   существует и равен l, то предел . Далее для любого > 0 существует такой номер m, что для всех n > m выполняется неравенство .  

Так как то для любого фиксированного значения m  . Тогда

Следовательно, существует такой номер n0, что при n > n0 неравенство

.

Тогда

По определению предела получаем, что

.

Так как это справедливо для любой последовательности {xn}, сходящаяся к  a, то по определению предела функции по Гейне получаем.

Замечание 1. Второе правило Лопиталя имеет место и для правого и левого пределов как в конечной так и в бесконечных точках.

Замечание 2. Второе правило Лопиталя можно применять несколько раз при условии, что последний предел существует и при каждом переходе выполняются условия теоремы 1.

Пример. .

  1.  Применение правил Лопиталя при раскрытии неопределенностей.

Правило Лопиталя применяется при раскрытии неопределенностей, указанных в предыдущих параграфах видов

, и неопределенностей видов 0,   - , 1  , 0 , 00, которые сводятся к указанным двум неопределенностям.

Пример 1. .

Пример 1. .

Неопределенности 1  , 0 , 00 раскрываются методом логарифмирования или использование основного логарифмического тождества и по теореме о переходе к пределу под знаком непрерывной функции. Например,

,

При вычислении пределов в показателе можно применять правила Лопиталя.

Пример 3.

 .

Пример 2.

 .

Пример 2. . Обозначим  и применим способ логарифмирования.

.

.

Отсюда

.

  1.  Формула Тейлора с остаточным членом в форме Пеано.

Определение 1. Пусть функция f(x) определена в некоторой окрестности точки a и имеет в этой точке все производные до n-го порядка включительно. Многочленом Тейлора функции f(x) порядка n степени с центром в точке a называется следующее выражение:

       (1)

Теорема 1 (формула Тейлора с остаточным членом в форме Пеано). Пусть выполняются условия:

  1.  функция f(x) определена и n-1 раз дифференцируема в некоторой окрестности точки a;
  2.  имеет в точка a производную n-го порядка f(n)(a).

Тогда 

Rn(x) = f(x)-fn(a,x) = o((x-a)n) ,                                                               (2)

где символ o((x-a)n) обозначает, что Rn(x) есть величина бесконечно малая при x-a ® 0 большего порядка чем (x-a)n.

Доказательство. Применим правило Лопиталя n-1 раз при x-a ® 0 к отношению

.

Получим

(в последнем переходе мы использовали определение производной функции и существование  производной n-го порядка в точке a). Отсюда a(x) по определению есть бесконечно малая при x®a, и по определению символа o - малое Rn(x) = o((x-a)n).  

Равенство (1) удобно записать в виде:

  (3)

и его обычно называют формулой Тейлора n-го порядкас остаточным членом в форме Пеано.

Кроме этого равенство (2) утверждает, что   f(x) ~ fn(a,x) при x®a.

некоторой окрестности точки a и имеет в этой точке все производные до n-го порядка включительно.

Разность Rn(x) = f(x)-fn(a,x)  называют остаточным членом в формуле Тейлора. При a=0 формула (3) принимает вид

.                  (4)

и называется формулой Маклорена с остаточным членом в форме Пеано.

  1.  Формула Тейлора с остаточным членом в форме Лагранжа.

Теорема 1 (формула Тейлора с остаточным членом в общем виде). Пусть функция f(x) n+1 раз дифференцируема на интервале (x1, x2)  и пусть x, a - любые две точки из этого интервала. Тогда для любого положительного числа a существует такая точка с лежащая между точками x и a, что выполняется равенство:

.                         (1)

Доказательство. Определим функцию g(x) равенством

.

Нам надо доказать, что между точками x, a найдется такая точка , что выполняется равенство

.

Равенство, определяющее g(x), можно записать в виде

.

Рассмотрим функцию j(t), определенную на отрезке с концами x, a, равенством

.

Проверяем для этой функции j(t) условия теоремы Ролля:

  1.  .
  2.  Функция j(t) непрерывна на с концами x, a. 
  3.  Функция  дифференцируема на интервале с концами x, a.

Тогда по теореме Ролля существует такая точка , лежащая между точками , что выполняется равенство

(с) = 0.  Так как

,

то

Отсюда при t=c получаем

Следовательно,

.

Теорема доказана.

Поскольку c лежит между точками a и x, то найдется такое число q, что 0<q<1, c-a=q(x-a). При этом    c=a+q(x-a) (это верно при любом расположении чисел a и x. Таким образом формулу (3) можно переписать в виде:

                      (2)

Формула Тейлора с общим членом может быть записана в виде:

.    (3)

 Остаточный член в форме Лагранжа получается из формулы (2) при a=n+1, когда имеем

.,  (0<q<1).                                  (4)

Формула Тейлора с остаточным членом в форме Лагранжа принимает вид:

.        (5)

Остаточный член в форме Коши получается из формулы (2) при a=1, когда имеем

.,  (0<q<1).                                  (6)

При a=0 формула (5) принимает вид

.                               (7)

и называется формулой Маклорена с остаточным членом в форме Лагранжа.

Замечание. Формула Тейлора с остаточным членом в форме Лагранжа более точная, чем формула Тейлора с остаточным членом Пеано, так как она оценивает остаточный член более точно. Но для применимости формулы Тейлора с остаточным членом в Форме Лагранжа требуется выполнимость более жестких условий: формула Тейлора с остаточным членом в форме Лагранжа требует сужествования на интервале производных на два порядка выше, чем в формуле Тейлора с остаточным членом в форме Пеано.

  1.  Разложение основных элементарных функций по формуле Тейлора.

Применим формулу Маклорена к разложению некоторых элементарных функций.

1. Показательная функция . Имеем

Формула Тейлора с остаточным членом в форме Лагранжа принимает вид:

                                    (1)

Поскольку для любого фиксированного n остаток стремится к нулю при n®¥,

.

2. Функция . Имеем

Формула Тейлора с остаточным членом в форме Лагранжа принимает вид:

.                          (2)

3. Функция . Имеем

Формула Тейлора с остаточным членом в форме Лагранжа принимает вид:

.                          (3)

3. Функция . Имеем

Формула Тейлора с остаточным членом в форме Лагранжа принимает вид:

.                                (4)

Заметим, что Rn(x) ® 0 при n®¥, если |x|<1.

4. Функция . Имеем

Формула Тейлора с остаточным членом в форме Лагранжа принимает вид:

.      (4)

Заметим, что Rn(x) ® 0 при n®¥, если |x|<1.

Формулы Тейлора играет важную роль в математическом анализе. Заметим, что по формуле Тейлора можно приблизительно вычислить значение функции f(x) в точке x = a + Dx. В этом случае по Формуле Тейлора получаем

.

Отсюда получаем

где абсолютная погрешность вычисления можно найти, оценив остаточный член

.


 

А также другие работы, которые могут Вас заинтересовать

31288. Дослідження схем активних випрямлячів в пакеті Electronics Workbench 1.11 MB
  Робота подібних випрямлячів як правило заснована на тому що при одній полярності вхідна напруга з деяким масштабним коефіцієнтом подається на вихід а при іншій вихідна напруга підтримується рівною нулю однонапівперіодний випрямляч чи інвертованій вхідній напрузі двонапівперіодний випрямляч. Побудувати схеми випрямлячів в пакеті Electronics Workbench для контролю за вихідними параметрами необхідно до виходів випрямлячів підключити вольтметр та осцилограф. Для кожного з побудованих випрямлячів визначити його тип.
31289. Дослідження комбінаційних схем, реалізованих за методом декомпозиції 1.2 MB
  Знайти гарантовано мінімальний вираз для довільної функції можна лише перебравши всі варіанти різних способів групування в процесі мінімізації що реально лише для невеликої кількості аргументів. З точки зору підходів до спрощення логічних виразів функції з якими має справу схемотехнік доцільно розділити на три групи: функції невеликої кількості аргументів €œобєктивні€ функції багатьох аргументів €œсубєктивні€ функції багатьох аргументів. До першої групи відносять функції трьохпяти аргументів. Статистичний аналіз реальних схем...
31290. Дослідження схем синхронних та асинхронних цифрових автоматів з пам’яттю в пакеті Electronics Workbench 2.88 MB
  При моделюванні роботи синхронного автомата синхросерію слід подавати з генератора коливань обравши прямокутну форму імпульсів з параметрами близькими до вказаних на рис. Побудування логічних вентилів при синтезі синхронного автомата Якщо потрібно сформувати память автомата на Ттригерах не слід шукати їх в бібліотеці елементів так як їх фізично не існує необхідно побудувати Т тригер з JK тригера походячи з таблиці переходів. Часові діаграми роботи автомата слід скопіювати через буфер до редактора Paint або іншого графічного...
31291. Вивчення структури контролера КРВМ-2 та його засобів вводу-виводу 677.5 KB
  ЯПВВ - комірка програмованого вводу-виводу. Забезпечує зв’язок з зовнішніми об’єктами за будь-яким напрямком. До складу комірки входить мікросхема КР580ВВ55, порти якої з’єднані із зовнішніми приладами через шинні підсилювачі К589АП16, 2 шинних формувача КР580ВА86, мікросхеми К555ИД4 (здвоєний дешифратор 2 входи – 4 виходи), мікросхеми К155ТМ8 (4 D-тригери), К155ЛА3 (4 елементи 2І-НІ).
31292. Розрахунок генераторів пилкоподібної напруги 408 KB
  широко використовуються генератори пилкоподібної лінійнозмінної напруги. Часову діаграму пилкоподібної напруги наведено на рис.1 Часова діаграма пилкоподібної напруги Основними параметрами такої напруги є: тривалість робочого і зворотного ходу пилкоподібної напруги; період проходження імпульсів ; амплітуда імпульсів ; коефіцієнт нелінійності і коефіцієнт використання напруги джерела живлення .
31293. Розрахунок схем активних фільтрів 778 KB
  Апроксимація характеристик активних фільтрів зводиться до вибору таких коефіцієнтів цих поліномів що забезпечують найкраще в тому чи іншому значенні наближення до бажаних амплітудночастотної АЧХ чи фазочастотної характеристик фільтра.1 де відносна частота; частота зрізу; порядок фільтра. В фільтрі Чебишева апроксимуюча функція вибирається так щоб в смузі пропускання фільтра отримати відхилення його характеристики від ідеальної що не перевищує деякої заданої величини.2 де постійний коефіцієнт що визначає нерівномірність АЧХ...
31294. Мінімізація логічних функцій 449.5 KB
  Основна задача при побудові систем керування дискретними обєктами і процесами на основі логічних функцій: приведення логічних функцій керування до найбільш простого виду при якому система керування буде виконувати свої задачі. Для ручної мінімізації логічних функцій використовуються карти Карно і діаграми Вейча причому останні будують як розгорнення кубів на площині карти Карно.
31295. Тема: Синтез комбінаційних схем на мікросхемах середнього ступеня інтеграції Мета заняття:Закріпити отр. 1.08 MB
  Традиційно ця назва застосовується до вузлів робота яких не описується досить простим алгоритмом а задається таблицею відповідності входів і виходів.1 Якщо декодер має входів виходів і використовує всі можливі набори вхідних змінних то . Число входів і виходів декодера вказують таким чином: декодер 38 читається €œтри на вісім€ 416 410 неповний декодер. Мультиплексор це функціональний вузол що здійснює підключення комутацію одного з декількох входів даних до виходу.