22423

Неопределенный интеграл

Лекция

Математика и математический анализ

Функция Fx называется первообразной функцией или просто первообразной для функции fx на интервале a b если функция Fx дифференцируема в любой точке x  a b и имеет производную F ' x равную fx т. Если F1x и F2x две первообразные функции fx на интервале a b то всюду на интервале a b F2x = F1x С где С некоторая постоянная. Пусть F1x и F2x две первообразные функции fx на a b. Если F1x первообразные функции fx на интервале a b то любая ее первообразная F2x имеет вид F2x =...

Русский

2013-08-04

126.5 KB

2 чел.

110100, 110600                            Математика                                        Толстиков А.В.

Курс 1. Семестр 1. Лекция 21. Неопределенный интеграл

План

  1.  Первообразная и определение неопределенного интеграла.
  2.  Свойства неопределенного интеграла.
  3.  Табличные интегралы.
  4.  Замена переменной в неопределенном интеграле.
  5.  Интегрирование по частям в неопределенном интеграле.

Литература: Ермаков В.И. с. 276-280. Ильин В.А., с.183-195. Шнейдер В.Е. 285-296. Кремер Н.Ш. 251-266.

  1.  Первообразная и определение неопределенного интеграла. 

Определение 1. Функция F(x) называется первообразной функцией (или просто первообразной) для  функции f(x) на интервале (a, b), если функция F(x) дифференцируема в любой точке x  (a, b) и имеет производную F ' (x), равную f(x), т.е. для любого x  (a, b) выполняется равенство

F ' (x) = f(x) или dF (x) = f(x)dx.

Операция нахождения первообразной - обратная по отношении к операции дифференцирования.

Теорема 2. Если F1(x) и F2(x) две первообразные функции  f(x) на интервале (a, b), то всюду на интервале (a, b) F2(x) = F1(x) + С, где С - некоторая постоянная.

Доказательство. Пусть F1(x) и F2(x) - две первообразные функции f(x) на (a, b). Рассмотрим их разность        g(x)=F2(x)- F1(x). Тогда  по свойству производной и определению первообразной получаем

g' (x)=(F2(x)- F1(x))' = F2'(x) - F1'(x) = f(x) - f(x) = 0  

для любого x  (a, b). Тогда по свойству следствию теоремы Лагранжа получаем g(x) = С - постоянная функция на . (a, b). Отсюда F2(x) = F1(x) + С.  

Следствие.  Если F1(x) -  первообразные функции  f(x) на интервале (a, b), то любая ее первообразная F2(x) имеет вид F2(x) = F1(x) + С, где С - некоторая постоянная.

Определение 2. Неопределенным интегралом от функции f(x) на интервале (a, b) называется совокупность всех первообразных функции f(x) на интервале (a, b), и обозначается символом

.

Тогда функция  f(x) называется  подынтегральной функций, f(x)dx - подынтегральным выражением. В силу сказанного выше = F(x) + С, С - любая постоянная, F(x) - одна из первообразных. Операция нахождения первообразной называется интегрированием.

  1.  Свойства неопределенного интеграла.

1. Производная от неопределенного интеграла равна подынтегральной функции, т. е.   .

  1.  Дифференциал неопределенного интеграла равен подынтегральному выражению

.

3.  Неопределенный интеграл от дифференциала некоторой функции равен этой функции с точностью до постоянного слагаемого, т.е. .

  1.  Неопределенный интеграл от алгебраической суммы двух функций равен такой же сумме неопределенных интегралов от этих функций., т.е.

.

  1.  Постоянный множитель можно выносить за знак неопределенного интеграла,

т.е..

6. Инвариантность формулы интеграл: если то  где  u = (x) - любая непрерывная функция.

Доказательство. 1. По определению неопределенного интеграла = F(x) + С, С - любая постоянная, F(x) - одна из первообразных. По определению первообразной (F(x) + С)' = F ' (x) + С' = f(x) + 0 = f(x).

2.  По формуле для дифференциала дифференцируемой функции .  

  1.  Для дифференцируемой функции Тогда F(x) - одна из первообразных функции F' (x). Тогда по определению неопределенного интеграла .
  2.  Пусть F(x) и G(x) - первообразные соответственно функций f(x) и g(x). Тогда .  По свойству производной  (F(x)  G(x) + С)' = F ' (x)  G' (x) + С' = f(x)  g (x). Тогда по определению F(x)  G(x) + С - она из первообразных функции f(x)  g (x). Следовательно,  

.

  1.  Пусть F(x) - первообразная функции f(x). Тогда .  По свойству производной  (AF(x)+С)' = AF ' (x) + С' = Af(x). Тогда по определению AF(x) + С - она из первообразных функции Af(x). Следовательно,  

.

  1.  Пусть , где F(x) - первообразная функции f(x). По определению dF'(x)= f(x)dx. Пусть u =u(x) - функция, зависящая от переменной x. По теореме об инвариантности формы первого дифференциала имеем dF'(u)= f(u)du. Отсюда по свойству 2 .  

  1.  Табличные интегралы. Метод непосредственного интегрирования.

Часть формул получаются прямо из таблицы производных, учитывая, что операция интегрирования обратна операции дифференцирования. Для доказательства других формул достаточно показать, что производная от правой часть формулы равна подынтегральной функции. Проверьте самостоятельно формулы 12-23.

Способ вычисления неопределенного интеграла, основанный на простейших свойствах неопределенного интеграла и приводимый к одному или нескольким табличным интегралам называется методом непосредственного интегрирования. Для сведения интеграла к табличному используется прием подведения функции  под знак дифференциала, основанный на следующих формулах:

  1.  Замена переменной в неопределенном интеграле.

Теорема 1. Пусть функция t = (x) определена и дифференцируема на множестве X и пусть T множество всех значений этой функции. Пусть для функции g(t) существует на множестве T первообразная функция G(t), т.е.

= G(t) + c.

Тогда всюду на множестве X для функции g((x))'(x) существует первообразная функция, равная G((x)), т.е.

.

Доказательство. Покажем, что производная от правой часть формулы равна подынтегральной функции. По правилу дифференцирования сложной функции получаем:

.

Отсюда следует утверждение теоремы.

Для вычисления неопределенного интеграламожно применять подстановку x = (t), где функция, имеющая непрерывную производную на рассматриваемом промежутке. Тогда d x = d(t) = ' (t)dt и получим формулу интегрирования подстановкой

.                                                                    (1)

После взятия неопределенного интеграла необходимо перейти от новой переменной t к старой x.

Теорема 2. Пусть F(x) - первообразная функция f(x) . Тогда

,

где k, b - некоторые числа и k  0.

Применяя метод интегрирования подстановкой получаем следующие формулы.

  1.  Интегрирование по частям в неопределенном интеграле.

Теорема 1. Пусть каждая из функций u(x), v(x) дифференцируема на множестве X и пусть на этом множество существует первообразная функции v (x)u' (x) . Тогда на этом множестве существует первообразная функции       u(x) v' (x), причем справедлива формула

.                                                       (1)

Доказательство. По формуле дифференцирования произведения имеем

.

Тогда по определению неопределенного интеграла имеем:

.

Отсюда по свойству аддитивности неопределенного интеграла имеем

.

Поэтому

.

Формулу в силу инвариантности дифференциала можно записать в виде

                                                                                (2)

Вычисление интеграла по формуле (1) называется интегрированием по частям. Интегралы, берущиеся по частям, можно разбить на три группы.

  1.  К первой группе относим интегралы, в которых подынтегральная функция содержит в качестве множителя одну из функций

.

Применяем формулу (2) полагая в ней u(x) одной из указанных функций.

  1.  Ко второй группе относим интегралы вида

где a, b, k - постоянные. Они берутся -кратным интегрированием по частям в качестве u(x) берут ax+b в соответствующей степени.

  1.  К третьей группе относим интегралы вида

,

где a, b, k - постоянные. Обозначаем интеграл этой группы через и дважды применяя интегрирование по частям приводим его к решению уравнения первой степени относительно . Например, вычислим первый интеграл.

Отсюда находим

.


 

А также другие работы, которые могут Вас заинтересовать

77927. Работа в математическом пакете Mathcad 168.5 KB
  «Mathcad» включает в свой состав три редактора - формульный, текстовый и графический. Благодаря им обеспечивается принятый в математике способ записи функций и выражений и получение результатов вычислений, произведенных компьютером
77928. Арифметико-логические основы информатики 119 KB
  Арифметико-логические основы информатики Цели изучения: Сформировать представление об информационном обществе Объяснить роль и назначение информатики Определить понятие информации её свойства измерение и характеристики Получить знания о кодировании и представлении информации в ЭВМ. Основные понятия информатики Роль информатизации в развитии общества Структура информатики Измерение информации Качество информации. Системное программное обеспечение компьютеров Цели изучения: Сформировать...
77930. Системы счисления. Кодирование информации 253 KB
  Система счисления называется позиционной, если одна и та же цифра имеет различные значения, определяемые позицией цифры в последовательности цифр, изображающей число. Количество (Р) различных цифр
77931. ТЕНЗОМЕТРИЧЕСКИЕ ИЗМЕРЕНИЯ 18 KB
  Физически измеряются: деформации под действием силы и напряжения емкостными индуктивными пьезо и тензодатчиками. Основным недостатком ненаклеиваемых датчиков является разный теплоотвод от его элементов следовательно сильное влияние нагрева от измерительного тока что заставляет снижать токснижая чувствительность датчика. Удлинение датчика до 5 на бумажной или полиамидной основе и 0. Применяемый для крепления датчика клей существенно влияет на характеристики измерения за счет: деформации сдвига передающей деформация на резистор ...
77932. КАЧЕСТВО ПРОДУКЦИИ И ЕГО КОНТРОЛЬ 19.5 KB
  Контроль качества контроль количественных и качественных характеристик произведенной продукции. Входной контроль для выяснения качества исходных материалов документации и оборудования. Для возможности сравнения двух вариантов технологии мера качества или иначе критерий качества должна быть определена как закон по которому каждой совокупности характеристик можно поставить в соответствие одно число. Естественно что критерии качества будут разными не только для разных применений разных технологий и разных...
77933. НЕРАЗРУШАЮЩИЕ МЕТОДЫ КОНТРОЛЯ 160 KB
  Быстрые электроны получают в разных ускорителях или от изотопных источников теллур стронций бета излучения. Спектр излучения сплошной с характеристическими пиками материала мишени. Размер зоны излучения определяется размером пучка электронов и лимитируется допустимой плотностью мощности на мишени. Ионизационная...
77934. УЛЬТРАЗВУКОВАЯ ДЕФЕКТОСКОПИЯ 22.5 KB
  Обычно дефекты в виде неоднородности среды превышают по размерам длину волны колебания. Наиболее распространены шесть методов УЗ контроля: Импульсный эхометод состоит в анализе отраженной волны короткого импульса УЗ. Характеристика направленности определяется интерференцией волны от разных точек излучателя и описывается функцией SIN X X с аргументом зависящим от соотношений линейного размера излучателя и длины волны колебания. Скорость распространения волны: C = где K модуль всестороннего сжатия RO плотность.
77935. МАГНИТНЫЕ И ДРУГИЕ МЕТОДЫ КОНТРОЛЯ 15.5 KB
  Контроль магнитного поля для фиксации неоднородности соответствующей дефекту может осуществляться разными методами: Порошковый метод применяется для анализа статического остаточного поля и заключается в налипании ферромагнитного порошка...