22423

Неопределенный интеграл

Лекция

Математика и математический анализ

Функция Fx называется первообразной функцией или просто первообразной для функции fx на интервале a b если функция Fx дифференцируема в любой точке x  a b и имеет производную F ' x равную fx т. Если F1x и F2x две первообразные функции fx на интервале a b то всюду на интервале a b F2x = F1x С где С некоторая постоянная. Пусть F1x и F2x две первообразные функции fx на a b. Если F1x первообразные функции fx на интервале a b то любая ее первообразная F2x имеет вид F2x =...

Русский

2013-08-04

126.5 KB

2 чел.

110100, 110600                            Математика                                        Толстиков А.В.

Курс 1. Семестр 1. Лекция 21. Неопределенный интеграл

План

  1.  Первообразная и определение неопределенного интеграла.
  2.  Свойства неопределенного интеграла.
  3.  Табличные интегралы.
  4.  Замена переменной в неопределенном интеграле.
  5.  Интегрирование по частям в неопределенном интеграле.

Литература: Ермаков В.И. с. 276-280. Ильин В.А., с.183-195. Шнейдер В.Е. 285-296. Кремер Н.Ш. 251-266.

  1.  Первообразная и определение неопределенного интеграла. 

Определение 1. Функция F(x) называется первообразной функцией (или просто первообразной) для  функции f(x) на интервале (a, b), если функция F(x) дифференцируема в любой точке x  (a, b) и имеет производную F ' (x), равную f(x), т.е. для любого x  (a, b) выполняется равенство

F ' (x) = f(x) или dF (x) = f(x)dx.

Операция нахождения первообразной - обратная по отношении к операции дифференцирования.

Теорема 2. Если F1(x) и F2(x) две первообразные функции  f(x) на интервале (a, b), то всюду на интервале (a, b) F2(x) = F1(x) + С, где С - некоторая постоянная.

Доказательство. Пусть F1(x) и F2(x) - две первообразные функции f(x) на (a, b). Рассмотрим их разность        g(x)=F2(x)- F1(x). Тогда  по свойству производной и определению первообразной получаем

g' (x)=(F2(x)- F1(x))' = F2'(x) - F1'(x) = f(x) - f(x) = 0  

для любого x  (a, b). Тогда по свойству следствию теоремы Лагранжа получаем g(x) = С - постоянная функция на . (a, b). Отсюда F2(x) = F1(x) + С.  

Следствие.  Если F1(x) -  первообразные функции  f(x) на интервале (a, b), то любая ее первообразная F2(x) имеет вид F2(x) = F1(x) + С, где С - некоторая постоянная.

Определение 2. Неопределенным интегралом от функции f(x) на интервале (a, b) называется совокупность всех первообразных функции f(x) на интервале (a, b), и обозначается символом

.

Тогда функция  f(x) называется  подынтегральной функций, f(x)dx - подынтегральным выражением. В силу сказанного выше = F(x) + С, С - любая постоянная, F(x) - одна из первообразных. Операция нахождения первообразной называется интегрированием.

  1.  Свойства неопределенного интеграла.

1. Производная от неопределенного интеграла равна подынтегральной функции, т. е.   .

  1.  Дифференциал неопределенного интеграла равен подынтегральному выражению

.

3.  Неопределенный интеграл от дифференциала некоторой функции равен этой функции с точностью до постоянного слагаемого, т.е. .

  1.  Неопределенный интеграл от алгебраической суммы двух функций равен такой же сумме неопределенных интегралов от этих функций., т.е.

.

  1.  Постоянный множитель можно выносить за знак неопределенного интеграла,

т.е..

6. Инвариантность формулы интеграл: если то  где  u = (x) - любая непрерывная функция.

Доказательство. 1. По определению неопределенного интеграла = F(x) + С, С - любая постоянная, F(x) - одна из первообразных. По определению первообразной (F(x) + С)' = F ' (x) + С' = f(x) + 0 = f(x).

2.  По формуле для дифференциала дифференцируемой функции .  

  1.  Для дифференцируемой функции Тогда F(x) - одна из первообразных функции F' (x). Тогда по определению неопределенного интеграла .
  2.  Пусть F(x) и G(x) - первообразные соответственно функций f(x) и g(x). Тогда .  По свойству производной  (F(x)  G(x) + С)' = F ' (x)  G' (x) + С' = f(x)  g (x). Тогда по определению F(x)  G(x) + С - она из первообразных функции f(x)  g (x). Следовательно,  

.

  1.  Пусть F(x) - первообразная функции f(x). Тогда .  По свойству производной  (AF(x)+С)' = AF ' (x) + С' = Af(x). Тогда по определению AF(x) + С - она из первообразных функции Af(x). Следовательно,  

.

  1.  Пусть , где F(x) - первообразная функции f(x). По определению dF'(x)= f(x)dx. Пусть u =u(x) - функция, зависящая от переменной x. По теореме об инвариантности формы первого дифференциала имеем dF'(u)= f(u)du. Отсюда по свойству 2 .  

  1.  Табличные интегралы. Метод непосредственного интегрирования.

Часть формул получаются прямо из таблицы производных, учитывая, что операция интегрирования обратна операции дифференцирования. Для доказательства других формул достаточно показать, что производная от правой часть формулы равна подынтегральной функции. Проверьте самостоятельно формулы 12-23.

Способ вычисления неопределенного интеграла, основанный на простейших свойствах неопределенного интеграла и приводимый к одному или нескольким табличным интегралам называется методом непосредственного интегрирования. Для сведения интеграла к табличному используется прием подведения функции  под знак дифференциала, основанный на следующих формулах:

  1.  Замена переменной в неопределенном интеграле.

Теорема 1. Пусть функция t = (x) определена и дифференцируема на множестве X и пусть T множество всех значений этой функции. Пусть для функции g(t) существует на множестве T первообразная функция G(t), т.е.

= G(t) + c.

Тогда всюду на множестве X для функции g((x))'(x) существует первообразная функция, равная G((x)), т.е.

.

Доказательство. Покажем, что производная от правой часть формулы равна подынтегральной функции. По правилу дифференцирования сложной функции получаем:

.

Отсюда следует утверждение теоремы.

Для вычисления неопределенного интеграламожно применять подстановку x = (t), где функция, имеющая непрерывную производную на рассматриваемом промежутке. Тогда d x = d(t) = ' (t)dt и получим формулу интегрирования подстановкой

.                                                                    (1)

После взятия неопределенного интеграла необходимо перейти от новой переменной t к старой x.

Теорема 2. Пусть F(x) - первообразная функция f(x) . Тогда

,

где k, b - некоторые числа и k  0.

Применяя метод интегрирования подстановкой получаем следующие формулы.

  1.  Интегрирование по частям в неопределенном интеграле.

Теорема 1. Пусть каждая из функций u(x), v(x) дифференцируема на множестве X и пусть на этом множество существует первообразная функции v (x)u' (x) . Тогда на этом множестве существует первообразная функции       u(x) v' (x), причем справедлива формула

.                                                       (1)

Доказательство. По формуле дифференцирования произведения имеем

.

Тогда по определению неопределенного интеграла имеем:

.

Отсюда по свойству аддитивности неопределенного интеграла имеем

.

Поэтому

.

Формулу в силу инвариантности дифференциала можно записать в виде

                                                                                (2)

Вычисление интеграла по формуле (1) называется интегрированием по частям. Интегралы, берущиеся по частям, можно разбить на три группы.

  1.  К первой группе относим интегралы, в которых подынтегральная функция содержит в качестве множителя одну из функций

.

Применяем формулу (2) полагая в ней u(x) одной из указанных функций.

  1.  Ко второй группе относим интегралы вида

где a, b, k - постоянные. Они берутся -кратным интегрированием по частям в качестве u(x) берут ax+b в соответствующей степени.

  1.  К третьей группе относим интегралы вида

,

где a, b, k - постоянные. Обозначаем интеграл этой группы через и дважды применяя интегрирование по частям приводим его к решению уравнения первой степени относительно . Например, вычислим первый интеграл.

Отсюда находим

.


 

А также другие работы, которые могут Вас заинтересовать

48673. Модель регулятора уровня жидкости 99 KB
  Подводящая и отводящая труба – объекты одного класса TTube. Верхний и нижний датчик – объекты одного класса TSensor. Поэтому вводится понятие модели объект Relity класса TRelity. При этом отпадает необходимость в наличии класса TSignl.
48674. Определение стоимости поставок товара на склад 501 KB
  Структура проектируемой базы данных. Создание базы данных программными средствами. Создание базы данных Создание модуля данных
48676. Исследование прохождения сигналов через линейную электрическую цепь 417.5 KB
  Произвести нормирование параметров и переменных цепи. Составить уравнения состояния цепи. Определить переходную характеристику цепи для реакции используя: а аналитический; б численный расчет. Оценить время переходного процесса в цепи по 5 критерию от .
48678. Расчет концентраций и расходов исходной и очищенной газовой смеси и количество поглощаемого СО2 279 KB
  VG н м3 ч Степень поглощения ψ Размеры колец Рашига характеристический размер N мм Коэффициент избытка поглотителя r Отношение скорости газа к скорости захлёбывания n Абсорбтив Вещество Молекулярная масса M кг кмоль Степень поглощения ψ Молярный поток абсорбтива на входе газовой фазы n н кмоль с Молярный межфазный поток Δn кмоль с Молярный коэффициент распределения m кмоль кмоль Абсорбат Вещество G Молекулярная масса MG кг кмоль Молярная доля на входе низ колонны yn н мол. доля Относительная молярная доля на входе низ колонны Yn н...
48679. Основи теорії кіл. Методичні вказівки 1.31 MB
  Технічне завдання на проектування фільтру та графік виконання курсової роботи. За технічним завданням необхідно виконати синтез і аналіз двох типів фільтрів: фільтру нижніх частот або верхніх частот а також смугового або загороджувального фільтру. Смуга частот яка призначена для виділення частотних складових спектру сигналу називається смугою пропускання фільтру.1 Класифікація і частотні характеристики електричних фільтрів Частотновибіркові властивості фільтру прийнято характеризувати частотною залежністю його комплексного коефіцієнта...
48680. Цифровые системы передачи непрерывных сообщений. Методические указания 488 KB
  Основная задача курсовой работы – закрепление навыков расчёта характеристик системы передачи непрерывных сообщений цифровыми сигналами. Содержание работы Исходными данными для выполнения работы являются: 1 статистические характеристики сообщения; 2 допустимое значение относительной среднеквадратичной ошибки искажений сообщения при его преобразовании в цифровую форму и действии помех; 3 вид модуляции сигнала во второй ступени. С учётом заданного вида модуляции сигнала определить его параметры характеризующие форму и требуемое...
48681. Исследование характеристик линейных электрических цепей 2.58 MB
  Задание к курсовой работе Нормирование параметров и переменных цепи Определение передаточной функции цепи Hs Расчет частотных характеристик цепи Hj Определение переходной h1t и импульсной ht характеристик Вычисление реакции цепи при воздействии одиночного импульса на входе Определение спектральных характеристик одиночного импульса воздействия Вычисление спектра реакции при одиночном импульсе на входе Определение спектра периодического входного сигнала Приближенный расчет реакции при...