22423

Неопределенный интеграл

Лекция

Математика и математический анализ

Функция Fx называется первообразной функцией или просто первообразной для функции fx на интервале a b если функция Fx дифференцируема в любой точке x  a b и имеет производную F ' x равную fx т. Если F1x и F2x две первообразные функции fx на интервале a b то всюду на интервале a b F2x = F1x С где С некоторая постоянная. Пусть F1x и F2x две первообразные функции fx на a b. Если F1x первообразные функции fx на интервале a b то любая ее первообразная F2x имеет вид F2x =...

Русский

2013-08-04

126.5 KB

2 чел.

110100, 110600                            Математика                                        Толстиков А.В.

Курс 1. Семестр 1. Лекция 21. Неопределенный интеграл

План

  1.  Первообразная и определение неопределенного интеграла.
  2.  Свойства неопределенного интеграла.
  3.  Табличные интегралы.
  4.  Замена переменной в неопределенном интеграле.
  5.  Интегрирование по частям в неопределенном интеграле.

Литература: Ермаков В.И. с. 276-280. Ильин В.А., с.183-195. Шнейдер В.Е. 285-296. Кремер Н.Ш. 251-266.

  1.  Первообразная и определение неопределенного интеграла. 

Определение 1. Функция F(x) называется первообразной функцией (или просто первообразной) для  функции f(x) на интервале (a, b), если функция F(x) дифференцируема в любой точке x  (a, b) и имеет производную F ' (x), равную f(x), т.е. для любого x  (a, b) выполняется равенство

F ' (x) = f(x) или dF (x) = f(x)dx.

Операция нахождения первообразной - обратная по отношении к операции дифференцирования.

Теорема 2. Если F1(x) и F2(x) две первообразные функции  f(x) на интервале (a, b), то всюду на интервале (a, b) F2(x) = F1(x) + С, где С - некоторая постоянная.

Доказательство. Пусть F1(x) и F2(x) - две первообразные функции f(x) на (a, b). Рассмотрим их разность        g(x)=F2(x)- F1(x). Тогда  по свойству производной и определению первообразной получаем

g' (x)=(F2(x)- F1(x))' = F2'(x) - F1'(x) = f(x) - f(x) = 0  

для любого x  (a, b). Тогда по свойству следствию теоремы Лагранжа получаем g(x) = С - постоянная функция на . (a, b). Отсюда F2(x) = F1(x) + С.  

Следствие.  Если F1(x) -  первообразные функции  f(x) на интервале (a, b), то любая ее первообразная F2(x) имеет вид F2(x) = F1(x) + С, где С - некоторая постоянная.

Определение 2. Неопределенным интегралом от функции f(x) на интервале (a, b) называется совокупность всех первообразных функции f(x) на интервале (a, b), и обозначается символом

.

Тогда функция  f(x) называется  подынтегральной функций, f(x)dx - подынтегральным выражением. В силу сказанного выше = F(x) + С, С - любая постоянная, F(x) - одна из первообразных. Операция нахождения первообразной называется интегрированием.

  1.  Свойства неопределенного интеграла.

1. Производная от неопределенного интеграла равна подынтегральной функции, т. е.   .

  1.  Дифференциал неопределенного интеграла равен подынтегральному выражению

.

3.  Неопределенный интеграл от дифференциала некоторой функции равен этой функции с точностью до постоянного слагаемого, т.е. .

  1.  Неопределенный интеграл от алгебраической суммы двух функций равен такой же сумме неопределенных интегралов от этих функций., т.е.

.

  1.  Постоянный множитель можно выносить за знак неопределенного интеграла,

т.е..

6. Инвариантность формулы интеграл: если то  где  u = (x) - любая непрерывная функция.

Доказательство. 1. По определению неопределенного интеграла = F(x) + С, С - любая постоянная, F(x) - одна из первообразных. По определению первообразной (F(x) + С)' = F ' (x) + С' = f(x) + 0 = f(x).

2.  По формуле для дифференциала дифференцируемой функции .  

  1.  Для дифференцируемой функции Тогда F(x) - одна из первообразных функции F' (x). Тогда по определению неопределенного интеграла .
  2.  Пусть F(x) и G(x) - первообразные соответственно функций f(x) и g(x). Тогда .  По свойству производной  (F(x)  G(x) + С)' = F ' (x)  G' (x) + С' = f(x)  g (x). Тогда по определению F(x)  G(x) + С - она из первообразных функции f(x)  g (x). Следовательно,  

.

  1.  Пусть F(x) - первообразная функции f(x). Тогда .  По свойству производной  (AF(x)+С)' = AF ' (x) + С' = Af(x). Тогда по определению AF(x) + С - она из первообразных функции Af(x). Следовательно,  

.

  1.  Пусть , где F(x) - первообразная функции f(x). По определению dF'(x)= f(x)dx. Пусть u =u(x) - функция, зависящая от переменной x. По теореме об инвариантности формы первого дифференциала имеем dF'(u)= f(u)du. Отсюда по свойству 2 .  

  1.  Табличные интегралы. Метод непосредственного интегрирования.

Часть формул получаются прямо из таблицы производных, учитывая, что операция интегрирования обратна операции дифференцирования. Для доказательства других формул достаточно показать, что производная от правой часть формулы равна подынтегральной функции. Проверьте самостоятельно формулы 12-23.

Способ вычисления неопределенного интеграла, основанный на простейших свойствах неопределенного интеграла и приводимый к одному или нескольким табличным интегралам называется методом непосредственного интегрирования. Для сведения интеграла к табличному используется прием подведения функции  под знак дифференциала, основанный на следующих формулах:

  1.  Замена переменной в неопределенном интеграле.

Теорема 1. Пусть функция t = (x) определена и дифференцируема на множестве X и пусть T множество всех значений этой функции. Пусть для функции g(t) существует на множестве T первообразная функция G(t), т.е.

= G(t) + c.

Тогда всюду на множестве X для функции g((x))'(x) существует первообразная функция, равная G((x)), т.е.

.

Доказательство. Покажем, что производная от правой часть формулы равна подынтегральной функции. По правилу дифференцирования сложной функции получаем:

.

Отсюда следует утверждение теоремы.

Для вычисления неопределенного интеграламожно применять подстановку x = (t), где функция, имеющая непрерывную производную на рассматриваемом промежутке. Тогда d x = d(t) = ' (t)dt и получим формулу интегрирования подстановкой

.                                                                    (1)

После взятия неопределенного интеграла необходимо перейти от новой переменной t к старой x.

Теорема 2. Пусть F(x) - первообразная функция f(x) . Тогда

,

где k, b - некоторые числа и k  0.

Применяя метод интегрирования подстановкой получаем следующие формулы.

  1.  Интегрирование по частям в неопределенном интеграле.

Теорема 1. Пусть каждая из функций u(x), v(x) дифференцируема на множестве X и пусть на этом множество существует первообразная функции v (x)u' (x) . Тогда на этом множестве существует первообразная функции       u(x) v' (x), причем справедлива формула

.                                                       (1)

Доказательство. По формуле дифференцирования произведения имеем

.

Тогда по определению неопределенного интеграла имеем:

.

Отсюда по свойству аддитивности неопределенного интеграла имеем

.

Поэтому

.

Формулу в силу инвариантности дифференциала можно записать в виде

                                                                                (2)

Вычисление интеграла по формуле (1) называется интегрированием по частям. Интегралы, берущиеся по частям, можно разбить на три группы.

  1.  К первой группе относим интегралы, в которых подынтегральная функция содержит в качестве множителя одну из функций

.

Применяем формулу (2) полагая в ней u(x) одной из указанных функций.

  1.  Ко второй группе относим интегралы вида

где a, b, k - постоянные. Они берутся -кратным интегрированием по частям в качестве u(x) берут ax+b в соответствующей степени.

  1.  К третьей группе относим интегралы вида

,

где a, b, k - постоянные. Обозначаем интеграл этой группы через и дважды применяя интегрирование по частям приводим его к решению уравнения первой степени относительно . Например, вычислим первый интеграл.

Отсюда находим

.


 

А также другие работы, которые могут Вас заинтересовать

64220. Познавательные аспекты раннего постнатального поведения 35 KB
  Так щенята лисята и детёныши других хищных млекопитающих уже с первого дня жизни совершают поисковые маятникообразные движения головой прекращающиеся после нахождения соска матери. В дальнейшем ориентировочные реакции усложняются детёныши развивают способности узнавать предметы...
64221. Игровой (ювенильный) период онтогенеза. Концепции игры. Значение игры для формирования поведения животных 33 KB
  Как было сказано выше ювенильный игровой период развития поведения наблюдается только у детёнышей высших животных у которых развитие поведения совершается перед половым созреванием в форме игровой активности.
64222. Формирование общения в играх животных 33.5 KB
  Такие игры встречаются только у животных которым свойственны развитые формы группового поведения. У детёнышей нехищных животных совместная игра состоит из общеподвижных игр совместных прыжков игрового бегства и так далее Игровая борьба если она встречается у данных видов...
64223. Познавательная функция игровой активности животных 29 KB
  В последнем случае имеет место активное воздействие на объект игры особенно деструктивного порядка позволяющее изучить внутреннее строение объекта а не только его внешние признаки. Важно что в ходе игры животное относится практически к каждому незнакомому предмету как к потенциально значимому и пытается найти ему применение.
64224. Общая характеристика эволюции психики 29.5 KB
  Исходя из этого следует что движение являлось решающим фактором эволюции психики. Леонтьев рассматривая эволюцию психики анализировал наиболее глубокие и качественные изменения которые претерпела психика в процессе эволюции животного мира.
64225. Элементарная сенсорная психика. Низший уровень психического развития. Характеристика сенсомоторной активности простейших 30 KB
  На низшем уровне психического развития находится довольно большая группа животных. Движения простейших отличаются большим разнообразием. Локомоция простейших осуществляется в виде кинезов элементарных инстинктивных движений.
64226. Общая характеристика психической активности простейших 27.5 KB
  Наряду с этим у простейших встречаются и элементы допсихического отражения простая раздражимость характерная для растений. У простейших встречаются разнообразные формы передвижения в водной среде но только на самом примитивном уровне инстинктивного поведения кинезов.
64227. Высший уровень развития элементарной сенсорной психики. Нервная система как фактор усложнения психической деятельности животных 26 KB
  Усложнение структуры организма обусловило возникновение нервной системы которая осуществляет координацию деятельности этих многоклеточных образований.
64228. Органы чувств и сенсорные способности низших многоклеточных беспозвоночных 28 KB
  Предполагается что первичные органы чувств вообще обладали лишь общей присущей всей живой материи чувствительностью но в повышенной степени. Согласно приведённой гипотезе все органы чувств многоклеточных животных развились из наименее дифференцированных осязательных рецепторов.