22423

Неопределенный интеграл

Лекция

Математика и математический анализ

Функция Fx называется первообразной функцией или просто первообразной для функции fx на интервале a b если функция Fx дифференцируема в любой точке x  a b и имеет производную F ' x равную fx т. Если F1x и F2x две первообразные функции fx на интервале a b то всюду на интервале a b F2x = F1x С где С некоторая постоянная. Пусть F1x и F2x две первообразные функции fx на a b. Если F1x первообразные функции fx на интервале a b то любая ее первообразная F2x имеет вид F2x =...

Русский

2013-08-04

126.5 KB

2 чел.

110100, 110600                            Математика                                        Толстиков А.В.

Курс 1. Семестр 1. Лекция 21. Неопределенный интеграл

План

  1.  Первообразная и определение неопределенного интеграла.
  2.  Свойства неопределенного интеграла.
  3.  Табличные интегралы.
  4.  Замена переменной в неопределенном интеграле.
  5.  Интегрирование по частям в неопределенном интеграле.

Литература: Ермаков В.И. с. 276-280. Ильин В.А., с.183-195. Шнейдер В.Е. 285-296. Кремер Н.Ш. 251-266.

  1.  Первообразная и определение неопределенного интеграла. 

Определение 1. Функция F(x) называется первообразной функцией (или просто первообразной) для  функции f(x) на интервале (a, b), если функция F(x) дифференцируема в любой точке x  (a, b) и имеет производную F ' (x), равную f(x), т.е. для любого x  (a, b) выполняется равенство

F ' (x) = f(x) или dF (x) = f(x)dx.

Операция нахождения первообразной - обратная по отношении к операции дифференцирования.

Теорема 2. Если F1(x) и F2(x) две первообразные функции  f(x) на интервале (a, b), то всюду на интервале (a, b) F2(x) = F1(x) + С, где С - некоторая постоянная.

Доказательство. Пусть F1(x) и F2(x) - две первообразные функции f(x) на (a, b). Рассмотрим их разность        g(x)=F2(x)- F1(x). Тогда  по свойству производной и определению первообразной получаем

g' (x)=(F2(x)- F1(x))' = F2'(x) - F1'(x) = f(x) - f(x) = 0  

для любого x  (a, b). Тогда по свойству следствию теоремы Лагранжа получаем g(x) = С - постоянная функция на . (a, b). Отсюда F2(x) = F1(x) + С.  

Следствие.  Если F1(x) -  первообразные функции  f(x) на интервале (a, b), то любая ее первообразная F2(x) имеет вид F2(x) = F1(x) + С, где С - некоторая постоянная.

Определение 2. Неопределенным интегралом от функции f(x) на интервале (a, b) называется совокупность всех первообразных функции f(x) на интервале (a, b), и обозначается символом

.

Тогда функция  f(x) называется  подынтегральной функций, f(x)dx - подынтегральным выражением. В силу сказанного выше = F(x) + С, С - любая постоянная, F(x) - одна из первообразных. Операция нахождения первообразной называется интегрированием.

  1.  Свойства неопределенного интеграла.

1. Производная от неопределенного интеграла равна подынтегральной функции, т. е.   .

  1.  Дифференциал неопределенного интеграла равен подынтегральному выражению

.

3.  Неопределенный интеграл от дифференциала некоторой функции равен этой функции с точностью до постоянного слагаемого, т.е. .

  1.  Неопределенный интеграл от алгебраической суммы двух функций равен такой же сумме неопределенных интегралов от этих функций., т.е.

.

  1.  Постоянный множитель можно выносить за знак неопределенного интеграла,

т.е..

6. Инвариантность формулы интеграл: если то  где  u = (x) - любая непрерывная функция.

Доказательство. 1. По определению неопределенного интеграла = F(x) + С, С - любая постоянная, F(x) - одна из первообразных. По определению первообразной (F(x) + С)' = F ' (x) + С' = f(x) + 0 = f(x).

2.  По формуле для дифференциала дифференцируемой функции .  

  1.  Для дифференцируемой функции Тогда F(x) - одна из первообразных функции F' (x). Тогда по определению неопределенного интеграла .
  2.  Пусть F(x) и G(x) - первообразные соответственно функций f(x) и g(x). Тогда .  По свойству производной  (F(x)  G(x) + С)' = F ' (x)  G' (x) + С' = f(x)  g (x). Тогда по определению F(x)  G(x) + С - она из первообразных функции f(x)  g (x). Следовательно,  

.

  1.  Пусть F(x) - первообразная функции f(x). Тогда .  По свойству производной  (AF(x)+С)' = AF ' (x) + С' = Af(x). Тогда по определению AF(x) + С - она из первообразных функции Af(x). Следовательно,  

.

  1.  Пусть , где F(x) - первообразная функции f(x). По определению dF'(x)= f(x)dx. Пусть u =u(x) - функция, зависящая от переменной x. По теореме об инвариантности формы первого дифференциала имеем dF'(u)= f(u)du. Отсюда по свойству 2 .  

  1.  Табличные интегралы. Метод непосредственного интегрирования.

Часть формул получаются прямо из таблицы производных, учитывая, что операция интегрирования обратна операции дифференцирования. Для доказательства других формул достаточно показать, что производная от правой часть формулы равна подынтегральной функции. Проверьте самостоятельно формулы 12-23.

Способ вычисления неопределенного интеграла, основанный на простейших свойствах неопределенного интеграла и приводимый к одному или нескольким табличным интегралам называется методом непосредственного интегрирования. Для сведения интеграла к табличному используется прием подведения функции  под знак дифференциала, основанный на следующих формулах:

  1.  Замена переменной в неопределенном интеграле.

Теорема 1. Пусть функция t = (x) определена и дифференцируема на множестве X и пусть T множество всех значений этой функции. Пусть для функции g(t) существует на множестве T первообразная функция G(t), т.е.

= G(t) + c.

Тогда всюду на множестве X для функции g((x))'(x) существует первообразная функция, равная G((x)), т.е.

.

Доказательство. Покажем, что производная от правой часть формулы равна подынтегральной функции. По правилу дифференцирования сложной функции получаем:

.

Отсюда следует утверждение теоремы.

Для вычисления неопределенного интеграламожно применять подстановку x = (t), где функция, имеющая непрерывную производную на рассматриваемом промежутке. Тогда d x = d(t) = ' (t)dt и получим формулу интегрирования подстановкой

.                                                                    (1)

После взятия неопределенного интеграла необходимо перейти от новой переменной t к старой x.

Теорема 2. Пусть F(x) - первообразная функция f(x) . Тогда

,

где k, b - некоторые числа и k  0.

Применяя метод интегрирования подстановкой получаем следующие формулы.

  1.  Интегрирование по частям в неопределенном интеграле.

Теорема 1. Пусть каждая из функций u(x), v(x) дифференцируема на множестве X и пусть на этом множество существует первообразная функции v (x)u' (x) . Тогда на этом множестве существует первообразная функции       u(x) v' (x), причем справедлива формула

.                                                       (1)

Доказательство. По формуле дифференцирования произведения имеем

.

Тогда по определению неопределенного интеграла имеем:

.

Отсюда по свойству аддитивности неопределенного интеграла имеем

.

Поэтому

.

Формулу в силу инвариантности дифференциала можно записать в виде

                                                                                (2)

Вычисление интеграла по формуле (1) называется интегрированием по частям. Интегралы, берущиеся по частям, можно разбить на три группы.

  1.  К первой группе относим интегралы, в которых подынтегральная функция содержит в качестве множителя одну из функций

.

Применяем формулу (2) полагая в ней u(x) одной из указанных функций.

  1.  Ко второй группе относим интегралы вида

где a, b, k - постоянные. Они берутся -кратным интегрированием по частям в качестве u(x) берут ax+b в соответствующей степени.

  1.  К третьей группе относим интегралы вида

,

где a, b, k - постоянные. Обозначаем интеграл этой группы через и дважды применяя интегрирование по частям приводим его к решению уравнения первой степени относительно . Например, вычислим первый интеграл.

Отсюда находим

.


 

А также другие работы, которые могут Вас заинтересовать

16266. Измерение параметров телевизионного тракта с помощью испытательных сигналов 2.15 MB
  Лабораторная работа №10 Измерение параметров телевизионного тракта с помощью испытательных сигналов Цель работы: Определение параметров телевизионного тракта с помощью испытательных сигналов. Научиться пользоваться генератором Г635. ...
16267. Телевизионные испытательные строки 1.01 MB
  Телевизионные испытательные строки Тракт телевизионного вещания очень специфичен: он отличается большой протяженностью и включает в себя огромное количество оборудования обслуживаемого различными службами. В тоже время необходимо знать характеристики не только
16268. Исследование кодера MPEG-2 552.3 KB
  Лабораторная работа №6.1 Исследование кодера MPEG2 1 Цель работы: Ознакомиться с назначением и характеристиками кодера PBI DCH3000EC 40. Ознакомиться с составом и назначением интерфейсов кодера PBI DCH3000EC 40. Ознакомиться с типовой схемой включения кодера PBI DCH3000EC 40. ...
16269. Исследование элементов синхрогенератора 610.5 KB
  Лабораторная работа №2 Исследование элементов синхрогенератора 1 Цель работы: Изучить принцип работы и выходные сигналы синхрокомплекта ПБ99. Исследовать форму и структуру сигналов на выходе синхрогенератора. 2 Литература: 2.1. Колин К....
16270. Исследование устройства декодирующего системы SECAM 681.5 KB
  Лабораторная работа №4 Исследование устройства декодирующего системы SECAM 1 Цель работы: Изучить принцип работы МЦ и СМЦ. Снять осциллограммы в контрольных точках. Сделать выводы о работоспособности блоков. 2 Литература: 2.1 Джакония...
16271. Исследование устройства кодирующего системы SЕCАМ 808 KB
  Лабораторная работа №3 Исследование устройства кодирующего системы SЕCАМ 1 Цель работы: Изучить состав устройства кодирующего ПБ29. Получить практические навыки по работе с устройством кодирующим. 2 Литература: 2.1 Джакония В.Е. Телевиде...
16272. Исследование спектра сигнала спутника Hot Biord 1.7 MB
  Лабораторная работа №4 Исследование спектра сигнала спутника Hot Biord 1 Цель работы: 1.1 Научиться пользоваться спутниковым ресивером. 1.2 Научиться настраиваться на выбранный транспондер и фиксировать его в памяти прибора DL4. 1.2 Научиться заносить данные прибора в ...
16274. Стандарт цифрового телевидения 4:2:2 290 KB
  Лабораторная работа №8 Стандарт цифрового телевидения 4:2:2 1 Цель работы: 1.1 Изучить метод аналогоцифрового преобразования в стандарте 4:2:2. 2 Литература: 2.1 Приложение А. 2.2 Приложение Б. 3 Подготовка к работе: 3.1 Повторить теоретический материал по стандар