22425

Методы интегрирования

Лекция

Математика и математический анализ

Он упрощается в следующих трех случаях: Функция Rx y нечетная относительно x Rx y = Rx y Rsin xcos x = Rsin xcos x sin x входит в нечетной степени в Rsin xcos x = R1sin2 xcos x sin x. Делаем подстановку t = cos x и получим . Функция Rx y нечетная относительно y Rx y = Rx y Rsin xcos x = Rsin xcos x cos x входит в нечетной степени в Rsin xcos x = R1sin xcos2 x cos x. Функция Rx y четная относительно x и y Rx y = Rx y Rsin xcos x = Rsin x cos x.

Русский

2013-08-03

115.5 KB

0 чел.

110100, 110600                              Математика                                 Толстиков А.В.

Курс 1. Семестр 1. Лекция 23. Методы интегрирования

План

  1.  Интегрирование простейших дробей.
  2.  Интегрирование рациональных дробей.
  3.  Интегрирование тригонометрических выражений.
  4.  Интегрирование дробно-линейных иррациональностей.
  5.  Интегрирование квадратичных иррациональностей.

Литература: Ильин В.А., с.217-238. Письменный Д., с. 210-220. Ермаков В.И., с.278-288. Крамер В.Ш., с.267-272.  

  1.  Интегрирование простейших дробей.

Определение 1. Простейшими рациональными дробями называются правильные рациональная дроби следующих типов:

где A, a, M, N, p, q - действительные числа.

Интегралы от первых трех дробей находятся по следующим формулам:

.

Интеграл от последней дроби подстановкой  приводится к виду

где интеграл Ik вычисляется по рекуррентным формулам:

.

  1.  Интегрирование рациональных дробей. Правило интегрирования рациональных дробей.
  2.  Если дробь неправильная, то представить ее в виде суммы многочлена и правильной дроби.
  3.  Разложить знаменатель правильной рациональной дроби на множители, т.е. представит его в виде

                                 (4)

где a0 - старший коэффициент многочлена f(x), x1, x2, …, xr.- действительные корни многочлена f(x) соответственно кратностей k1, k2, …, kr, трехчлены x2 + p1x + q1,…, x2 + psx + qs -попарно различны и имеют отрицательные дискриминанта. Рациональную дробь разложить на простей  дроби следующего вида

                    (5)

где Ai,,Bj , Cu , Mv ,… - действительные числа. Коэффициенты находятся методом неопределенных коэффициентов.

  1.  Проинтегрировать многочлен и полученную сумму простейших дробей по правилам первого параграфа.

Теорема 1. Всякая рациональная дробь интегрируема в элементарных функциях.

  1.  Интегрирование тригонометрических выражений. Пусть R(x, y) - любая рациональная функция от двух переменных x, y. Рассмотрим интеграл вида . Сделаем подстановку  . Тогда получим

,

а интеграл представится в виде

.

Указанный способ громоздкий, но всегда приводит к цели. Он упрощается в следующих трех случаях:

  1.  Функция  R(x, y) нечетная относительно x, R(-x, y) = - R(x, y), R(-sin x,cos x) = - R(sin x,cos x), sin x - входит в нечетной степени в R(sin x,cos x) = R1(sin2 x,cos x) sin x. Делаем подстановку t = cos x  и получим

.

  1.  Функция  R(x, y) нечетная относительно y, R(x, -y) = - R(x, y), R(sin x,-cos x) = - R(sin x,cos x), cos x - входит в нечетной степени в R(sin x,cos x) = R1(sin x,cos2 x) cos x. Делаем подстановку t = sin x  и получим

.

  1.  Функция  R(x, y) четная относительно x и y, R(-x, -y) = R(x, y), R(-sin x,-cos x) = R(sin x, cos x). cos x - входит в нечетной степени в R(sin x,cos x) = R(tg x cos x ,cos x) = R1(tg x ,cos2 x). Делаем подстановку t = tg x  и получим

.

Подстановка t = tg x  интегрирует  и функции вида R(tg x).

Для нахождения интегралов вида  используется следующее правила:

  1.  если n - целое положительное нечетное число, то используется подстановка t = sin x;
  2.  если m - целое положительное нечетное число, то используется подстановка t = cos x;
  3.  если n , m - целые неотрицательные четные числа, то используем формулы понижения степени.

;

  1.   если n + m - целые отрицательное четное число, то используем формулы понижения степени.

;используется подстановка t = cos x;

Для нахождения интегралов вида  используются следующие тригонометрические формулы:

.

  1.  Интегрирование дробно-линейных иррациональностей.  Дробно линейной иррациональностью называют функцию вида , где a, b, c, d - действительные числа, ad - bc  0. Производим подстановку .

Тогда получим

,

и функция интегрируема.

Биномиальным выражением называют функцию вида, где a, b - действительные числа, m, n, p - рациональные числа. Эта функция интегрируема только в следующих трех случаях.

1) p - целое число. Тогда биномиальное выражение имеет вид   , где r - наименьшее кратное знаменателей дробей m, n. Интегрируется подстановкой .

2) (m+1)/n - целое число. Тогда сделаем подстановку  z = xn. Будем иметь

.

Подынтегральная функция имеет вид   , где s - знаменатель дроби p. Интегрируется подстановкой .

3) 2) (m+1)/n + p - целое число. Подынтегральная функция имеет вид , где s - знаменатель дроби p. Интегрируется подстановкой .

Квадратичной  иррациональностью называют функцию вида , где a, b, c - действительные числа.

Если D = b2 - 4ac < 0, то сделаем подстановку (первая подстановка Эйлера).

Если D = b2 - 4ac  0, то сделаем подстановку  (вторая подстановка Эйлера).

Интегралы вида  к которым можно свести указанные выше интегралы интегрируют с помощью подстановок : x = asin t - первый интеграл, x = atg t - второй интеграл, x = a/sin t - третий интеграл.

Интеграл называется не берущимся, если он не выражается через элементарные функции.


 

А также другие работы, которые могут Вас заинтересовать

22119. Операции в алгебре событий 24.5 KB
  Дизъюнкцией событий S1 S2 Sk называют событие S = S1vS2vvSk состоящее из всех слов входящих в события S1 S2 Sk. Произведением событий S1 S2 Sk называется событие S = S1 S2 Sk состоящее из всех слов полученных приписыванием к каждому слову события S1 каждого слова события S2 затем слова события S3 и т. слова входящие в события S1S2 и S2S1 различны: т. Итерацией события S называется событие{S} состоящее из пустого слова e и всех слов вида S SS SSS и т.
22120. Система основных событий 28.5 KB
  Событие состоящее из всех слов входного алфавита всеобщее событие. F = {x1 v x2 v v xm} Событие содержащее все слова оканчивающиеся буквой xi. Событие содержащее все слова оканчивающиеся отрезком слова l1 S = F l1 Событие содержащее все слова начинающиеся с отрезка слова l1и оканчивающиеся на l2: S = l1 F l2 Событие содержащее только однобуквенные слова входного алфавита S = x1 v x2 v v xm Событие содержащее только двухбуквенные слова входного алфавита S = x1 v x2 v v xm x1 v x2 v v xm Событие содержащее все...
22121. Генетические основы эволюции 118.5 KB
  Комбинативная изменчивость изменчивость в основе которой лежит образование комбинаций генов которых не было у родителей. Комбинативная изменчивость обуславливается следующими процессами: независимым расхождением гомологичных хромосом в мейозе; случайным сочетанием хромосом при оплодотворении; рекомбинацией генов в результате кроссинговера. Частота мутаций не одинакова для разных генов и для разных организмов. Поскольку генов в каждой гамете много например у человека в геноме содержится около 30 тысяч генов то в каждом поколении около...
22122. ЭЛЕМЕНТАРНЫЕ ФАКТОРЫ ЭВОЛЮЦИИ 88 KB
  Тогда частота аллеля b в популяции будет медленно но неуклонно возрастать в каждом поколении на одну десятитысячную если этому возрастанию не будут препятствовать или способствовать другие факторы эволюции. В принципе только благодаря мутационному процессу новый аллель может практически полностью вытеснить старый аллель из популяции. Однако в одной популяции растущей на вершине урансодержащих гор вблизи Большого Медвежьего озера Канада обнаружены многочисленные мутантные растения с бледнорозовыми цветками. Изоляция это прекращение...
22123. ИСКУССТВЕННЫЙ ОТБОР 51.5 KB
  Количество часов: 2 ИСКУССТВЕННЫЙ ОТБОР Понятие об искусственном отборе Формы искусственного отбора Понятие об искусственном отборе Искусственный отбор выбор человеком наиболее ценных в хозяйственном отношении особей животных и растений данного вида пород или сорта для получения от них потомства с желательными свойствами. Таблица Формы отбора Показатели Искусственный отбор Естественный отбор Исходный материал для отбора Индивидуальныепризнаки организма Индивидуальные признаки организма Отбирающийфактор Человек Условия среды живаяи...
22124. Биологический вид 95 KB
  Количество часов: 2 Биологический вид История развития концепции вида. Современные концепции вида Критерии вида Структура и общие признаки вида История развития концепции вида. Современные концепции вида Вид является одной из основных форм организации жизни на Земле и основной единицей классификации биологического разнообразия. Есть группы с огромным числом видов и группы даже высокого таксономического ранга представленные немногими видами в современной фауне и флоре.
22125. Видообразование. Понятие о видообразовании. Пути видообразования. Принцип основателя 105 KB
  Пути видообразования. Принцип основателя Теория аллопатрического видообразования Теория симпатрического видообразования Темпы видообразования Дополнительная литература: Понятие о видообразовании. Пути видообразования. Существуют три основных пути видообразования: филетическое гибридогенное и дивергентное.
22126. Соотношение онто- и филогенеза 99.5 KB
  Особенности и продолжительность онтогенеза в разных группах организмов Соотношение между онто и филогенезом Основные направления эволюции онтогенеза Общие представления о филогенезе и онтогенезе. Особенности и продолжительность онтогенеза в разных группах организмов Филогенез phyle племя это историческое развитие как отдельных видов и систематических групп организмов так и органического мира в целом. Преобразование одноклеточного зародыша в многоклеточный организм развитие этих составных частей функционирование рост...
22127. Эволюция органов и функций 82 KB
  Количество часов: 2 Эволюция органов и функций Принципы филогенетического преобразования органов и функций. Взаимосвязь морфофизиологических преобразований органов и систем в филогенезе. Принцип компенсации функций Принципы филогенетического преобразования органов и функций. Филогенетические изменения органов весьма разнообразны.