22514

Применение вариационных методов

Лекция

Производство и промышленные технологии

Лишнюю опорную реакцию В Рис. Рис. При решении по Мору кроме первого состояния нагружения основной балки заданной нагрузкой и лишней неизвестной силой Рис.2 а следует показать ту же балку во втором состоянии загружения силой Рис.

Русский

2013-08-04

103 KB

1 чел.

Сопротивление материалов Сагадеев В.В.

Лекция № 36. Применение вариационных методов.

Раскрытие статической неопределимости для балки, может быть произведено и при помощи теоремы Кастильяно.

   «Лишнюю» опорную реакцию В (Рис.1, а) заменяем «лишней» неизвестной силой В, действующей вместе с заданной нагрузкой q на основную статически определимую балку АВ (фиг. 361, б).



Рис.1. Исходная, а) и основная — б) расчетные схемы

 

   Дифференцируя по силе В потенциальную энергию и вычисляя таким образом прогиб , следует приравнять нулю.

(1)

Остается вычислить М и , установить пределы интеграла и взять его.

Будем считать, что сечение балки не меняется по длине. Тогда уравнение (1) примет вид:

или

отсюда

Далее решение не отличается от описанного в способе сравнения деформаций.

   Раскрытие статической неопределимости возможно выполнить также и по теореме Мора. При решении по Мору, кроме первого состояния нагружения основной балки заданной нагрузкой и лишней неизвестной силой (Рис.2, а), следует показать ту же балку во втором состоянии загружения — силой (Рис.2,б).

Вычисления при обозначениях, принятых на Рис. 2, дают:



а) исходная модель, б) фиктивная модель нагружения, в) грузовая эпюра моментов, г) эпюра моментов от реакции В, д) единичная эпюра моментов

Рис.2. Решение методом Мора и Верещагина

 

т.е. то же, что и при использовании теоремой Кастильяно.

   При решении того же примера по способу Верищагина к двум схемам состояний загружения (Рис.2 а и б) следует построить эпюры моментов: от нагрузки q (Рис.2, в) от силы B (Рис.2 г), и от силы (Рис.2, д).

Величина моментных площадей:

от нагрузки q:

от нагрузки В:

Ординаты эпюр единичной нагрузки:

для умножения на :

для умножения на :

Прогиб в точке В

Отсюда

Совпадение результатов расчета опорной реакции очевидно.

 

Выбор лишней неизвестной и основной системы.

   В предыдущем примере мы выбрали за лишнюю неизвестную реакцию В. Мы могли бы выбрать и момент . Соответственно изменилась бы основная система и ход решения. Окончательный же результат, конечно, получился бы прежним. Возьмем за лишнюю неизвестную опорный момент (Рис.3, а). Какой будет основная система? Чтобы получить ее, надо отбросить то опорное закрепление, которое создает момент , т. е. защемление конца А. Чтобы на конце А не было опорного момента, там следует поставить шарнирно-неподвижную опору.

   Основной системой будет балка, изображенная на Рис.3, б. Загрузим ее внешней нагрузкой и опорным моментом (фиг. 363, в).

   Чтобы эти балки работали одинаково, надо для балки Рис.3, в написать дополнительное условие, что сечение А под действием изображенных нагрузок не может поворачиваться; накладываем это ограничение на перемещение, соответствующее выбранной лишней неизвестной:

Далее, применив для решения уравнения теорему Кастильяно, имеем



а) заданное. б) основная, в) эквивалентная

Рис.3. Расчетные схемы:

следовательно,

   Для нахождения М и выразим реакцию В основной системы через и произведем все обычные вычисления:

.

находим:

Отсюда

,

т. е. той же величине, которая была получена раньше. Дальнейший ход решения не отличается от разобранного выше.

   Решение той же основной системы (Рис.4, а) с применением способа Верещагина потребует изображения второго состояния загружения основной системы моментом (Рис.4, б) и построения эпюр изгибающего момента: от заданной нагрузки q (Рис.4, в), от момента (Рис.4, г) и от единичной нагрузки; (Рис.4, д). Вычисляем :



а)исходная схема, б) нагружение единичным моментом, в) грузовая эпюра, г) моментная эпюра, д) единичная эпюра моментов

Рис.4. Динамика расчета по методу Верещагина:

 

Как видно, уравнение для определения полностью совпадает с найденным по теореме Ка-стильяно.

   Сравнивая два варианта решения поставленной задачи с лишней неизвестной В и с лишней неизвестной , видим, что при применении способа Кастильяно первый вариант менее сложен по вычислениям. Это объясняется тем, что основной системой в первом варианте является балка, защемленная одним концом, во втором же — балка на двух опорах; для второй — вычисления сложнее. Таким образом, лишнюю неизвестную и, следовательно, основную систему надо выбирать с таким расчетом, чтобы выкладки (вычисление изгибающих моментов и т. д.) были проще.

   Если бы мы выбрали за лишнюю неизвестную реакцию А, то основную систему следовало бы так устроить, чтобы опора А не давала возможности поворота сечения и горизонтальных перемещений, но допускала бы вертикальные движения.

   За лишнюю неизвестную нельзя брать лишь ту реакцию, при отбрасывании которой мы получим изменяемую, неустойчивую основную систему.

 

Общий план решения статически неопределимой задачи.

Таким образом, общий метод решения, статически неопределимых задач распадается на ряд отдельных этапов.

   В дух предыдущих лекциях приведены два варианта решения задачи: с лишней реакцией В и с лишней реакцией . Для развертывания добавочного условия даны также два варианта решения: способом сравнения деформаций и с применением теоремы. Кастильяно.

   Если бы число реакций статически неопределимой балки было нe четыре, как в рассмотренном примере, а больше, то соответственно увеличилось бы число лишних неизвестных; загрузив основную систему внешней нагрузкой и этими лишними неизвестными, мы можем написать дополнительные условия, ограничивающие деформации балки в тех сечениях, где эти лишние реакции приложены. Таким путем будет получено столько же дополнительных уравнений, сколько лишних неизвестных.

   Следовательно, общий метод определения добавочных опорных реакций в статически неопределимых балках основан на том, что якая дополнительная опора, вводя лишнюю неизвестную реакцию, в то же время накладывает дополнительное ограничение в основной статически определимой системе на перемещение, соответствующее лишней неизвестной реакции. Выражая уравнением это ограничение, получаем столько дополнительных уравнений, сколько добавлено новых опорных закреплений.

 

Определение деформаций статически неопределимых балок.

   После того, как определены опорные реакции, построены эпюры изгибающих моментов и поперечных сил, подобраны сечения статически неопределимой балки, определение ее деформаций ничем- не отличается от таких же вычислений для статически определимой балки.

   Необходимо лишь отметить, что в этом случае мы будем иметь избыточное число уравнений для определения постоянных интегрирования. Этот избыток равен числу лишних неизвестных. Избыточные уравнения при правильно найденных реакциях обратятся в, тождества, ибо они уже и были использованы при нахождении лишних неизвестных. Так для балки, с левым (А), жесткозащемленным и правым (В), шарнирноопертыми концами с пролетом l, получим следующее дифференциальное уравнение изогнутой оси:

Интегрируем:

(а)

(b)

Постоянных интегрирования две, условий же для их определения можно написать три, а именно:

в точке А при прогиб и угол поворота ;

В х=0 у = 0.

   Третье из этих уравнений обратится в тождество, ибо оно уже было нами использовано при составлении дополнительного уравнения, из которого мы нашли для В значение . Заметим, что мы могли бы использовать уравнение изогнутой оси балки для нахождения лишней неизвестной. Приняв за лишнюю неизвестную реакцию В, составим и проинтегрируем дифференциальное уравнение изогнутой оси; получим формулы (а) и (b).

   Используя граничные условия в точках А и В, получим три уравнения, из которых найдем реакцию В и постоянные интегрирования С и D.


 

А также другие работы, которые могут Вас заинтересовать

7616. Законы Кирхгофа. Система уравнений электрического равновесия цепи 41.5 KB
  Законы Кирхгофа. Система уравнений электрического равновесия цепи Первый закон Кирхгофа: алгебраическая сумма мгновенных значений токов в узле равна нулю, при этом токи, втекающие в узел считают положительными, а вытекающие - отрицате...
7617. Классификация электрических цепей. Принцип наложения 31.5 KB
  Классификация электрических цепей. Принцип наложения Все электрические цепи можно разделить на цепи с сосредоточенными и распределенными параметрами. К цепям с сосредоточенными параметрами относят цепи, геометрическими размерами которых можно пренеб...
7618. Средства обработки БД в СУБД FoxPro 76.5 KB
  Средства обработки БД в СУБД FoxPro. Синтаксис и семантика основных операторов. SELECT 0 Выбрать свободную рабочую область и установить её текущей рабочей областью. Понятие рабочая область в определенном смысле соответствует понятию о...
7619. Потоковые функциональные SADT/IDEF0-диаграммы 40.5 KB
  Потоковые функциональные SADT/IDEF0-диаграммы. Базовые элементы языка. Действие(процесс) Поток данных Принципиальной особенностью языка SADT-диаграмм является наличие строгой интерпретации у каждой из 4-х сторон прямоугольника (блока), ...
7620. Базы данных. Информационные системы, базы данных и системы управления базами данных 1.38 MB
  Базы данных Информационные системы, базы данных и системы управления базами данных. Информационная система (ИС): предназначена для сбора, хранения и обработки информации ориентирована на конечного пользователя - непрограммиста. Конкретн...
7621. Введение в компьютерную графику 126.5 KB
  Введение в компьютерную графику Определение и основные задачи компьютерной графики. Области применения компьютерной графики. История развития компьютерной графики. Виды компьютерной графики. Определение и основные задачи компьютерной графики При обр...
7622. Аппаратное обеспечение компьютерной графики 191.5 KB
  Аппаратное обеспечение компьютерной графики Устройства вывода графических изображений, их основные характеристики. Мониторы, классификация, принцип действия, основные характеристики. Видеоадаптер. Принтеры, их классификация, основные характеристики ...
7623. Представление графических данных 171 KB
  Представление графических данных Форматы графических файлов. Понятие цвета. Зрительный аппарат человека, для восприятия цвета. Аддитивные и субтрактивные цвета в компьютерной графике. Понятие цветовой модели и режима. Закон Грассмана. Пиксельная глу...
7624. Фрактальная графика 306 KB
  Понятие фрактала и история появления фрактальной графики. Понятие размерности и ее расчет. Геометрические фракталы. Алгебраические фракталы. Системы итерируемых функций. Стохастические фракталы. Фракталы и хаос. Понятие фрактала ...