22524

Диаграмма усталостной прочности

Лекция

Производство и промышленные технологии

Диаграмма усталостной прочности. Эта кривая носит название диаграммы усталостной прочности рис. Точки А к С диаграммы соответствуют пределам прочности. Полученная диаграмма дает возможность судить о прочности конструкции работающей при циклически изменяющихся напряжениях.

Русский

2013-08-04

60.5 KB

4 чел.

Сопротивление материалов Сагадеев В.В.

Лекция № 46. Диаграмма усталостной прочности.

   Положим, имеется машина, на которой можно производить усталостные испытания в условиях любого несимметричного цикла. Задавая постоянное значение , находим путем последовательных испытаний образцов такое наибольшее значение амплитуды , при котором материал способен еще выдержать неограниченное число циклов. Если для взятого материала такого предельного напряжения не существует, величина определяется по условному базовому числу N.

   В результате проведенной серии испытаний устанавливается предельное значение , соответствующее некоторому напряжению . Полученный результат может быть графически изображен точкой в системе координат , ( рис. 438). Сумма координат этой точки дает предельное максимальное напряжение цикла, т. е. предел усталости , где:

   Продолжая такие испытания и дальше, получаем множество точек, через которые проводится предельная кривая, характеризующая прочностные свойства материала в условиях несимметричных циклов. Эта кривая носит название диаграммы усталостной прочности (рис. 1).

   Точки А к С диаграммы соответствуют пределам прочности.при простом растяжении и сжатии. Точка В отражает результаты испытания в условиях симметричного цикла.

   Полученная диаграмма дает возможность судить о прочности конструкции, работающей при циклически изменяющихся напряжениях.

   Положим, для некоторой детали цикл характеризуется значениями напряжений и . Эти величины могут рассматриваться как координаты рабочей точки в плоскости , . Если рабочая точка располагается ниже предельной кривой, рассматриваемая деталь может в условиях циклически изменяющихся напряжений работать неограниченно долго. Если рабочая точка оказывается выше предельной кривой, деталь разрушится после некоторого числа циклов.

   Так как построение диаграммы усталостной прочности связано с весьма трудоемкими испытаниями, предпочитают обычно полученную кривую АВС заменять двумя прямыми АВ и ВС, как это отмечено пунктиром на рис. 2. Рабочая область при этом несколько сокращается, что дает погрешность в запас прочности.



Рис.1. Реализация предельного напряжения.

 



Рис.2. Диаграмма усталостной прочности.

 

Одновременно отсекается сомнительная зона разброса экспериментальных точек.

   Для построения упрощенной диаграммы достаточно располагать пределом усталости при симметричном цикле , и иметь значения пределов прочности и .

   Рабочая точка в плоскости , не может занимать произвольное положение. Она должна находиться в области осуществимых циклов, которая определяется следующими очевидными условиями:

и

Так как:

, а

то область осуществимых циклов имеет верхнюю границу в виде двух прямых:

и

Эти прямые вместе образуют треугольник АСD (рис.3), который и представляет собой область осуществимых циклов.



Рис.3. Область осуществимых циклов

 



Рис.4. Область допустимых циклов с ограничениями на пластические деформации.

 

   Для пластичных материалов таким же способом может быть отмечена область упругих деформаций. Граница этой области очерчивается сверху прямыми:

и

В результате получаем треугольник (рис. 3).

   Если рабочая точка оказывается в пределах этого треугольника» пластические деформации в детали не возникают. Рабочая точка, находящаяся за пределами треугольника А'С'D', но остающаяся внутри треугольника АСD, свидетельствует о том, что в детали возникают пластические деформации. Если, наконец, рабочая точка оказывается за пределами треугольника АСD, при первом же цикле происходит разрушение детали.

   При расчетах конструкций, предназначенных на длительные сроки службы, напряжения цикла ограничиваются как по условиям усталостной прочности, так и по условиям недопущения пластических деформаций. Поэтому, объединяя диаграммы, показанные на рис. 2 и 3, получаем рабочую область в виде многоугольника А'КВLС' (рис.4). Рабочая точка (р. т.) исследуемого цикла для рассчитываемой детали должна находиться в пределах указанного многоугольника.

   Теперь возникает вопрос, как определить координаты рабочей точки и как определить коэффициент запаса детали в условиях циклического нагружения. Оба эти вопроса содержат в своем решении ряд специфических особенностей, к рассмотрению которых сейчас и перейдем.


 

А также другие работы, которые могут Вас заинтересовать

9881. УБТ и ведущие трубы, их назначение и конструкция 14.46 KB
  УБТ и ведущие трубы, их назначение и конструкция. Ведущие трубы. Передают вращение от ротора к бурильным трубам. Состоят из толстостенной квадратной штанги, верхнего переводника для соединения с вертлюгом, и нижнего штангового переводника. Наиболее ...
9882. НГВП при бурении скважин. Причины и признаки НГВП 15.48 KB
  НГВП при бурении скважин. Причины и признаки НГВП. Наиболее серьезен из видов осложнений, т.к. не ликвидированные НГВП может переходит в неуправляемый открытый фонтан, на ликвидацию которого тратится много времени и средств, иногда эти фонтаны возго...
9883. Меры предупреждения и ликвидации НГВП при бурении скважин 50.64 KB
  Меры предупреждения и ликвидации НГВП при бурении скважин. Действия при получении первых признаков НГВП: Может быть 3 ситуации: 1)когда инструмент находится на забое и в скважине 2)когда инструмент находится в процессе подъема или спуска 3)инструм...
9884. Обвалообразования, осыпи стенок и сужение ствола скважины в процессе бурения. Причины, признаки, меры предупреждения 16.38 KB
  Обвалообразования, осыпи стенок и сужение ствола скважины в процессе бурения. Причины, признаки, меры предупреждения. Осыпи и обвалы: Осыпи - это медленно текущий процесс нарушения ствола скважины из-за взаимодействия с БР (происходит набухание...
9885. Способы предотвращения и ликвидации бурового раствора в скважине 16.8 KB
  Способы предотвращения и ликвидации бурового раствора в скважине. Уменьшение скорости подачи промывочной жидкости или расхода, т.е. меняем расход, меняем давление в кольцевом пространстве Изменяем параметр БР, уменьшая удельный вес умен...
9886. Экспресс метод оценки пластового давления 11.55 KB
  Экспресс метод оценки пластового давления Допустим у нас была ситуация, когда вахте нельзя было работать на устье, скважину за герметизировали, т.е. перекрыли затрубное пространство. В затрубье поступил пластовый флюид. После закрытия скважины ждут ...
9887. Понятие о профиле ствола скважины, зенитном угле, азимуте, инклиннограмме 16.2 KB
  Понятие о профиле ствола скважины, зенитном угле, азимуте, инклиннограмме. Профили направленных скважин подразделяют на 3 основных типа: 1)Тангенциальная скважина. Отклоняют вблизи поверхности до величины угла, соответствующего техническим условиям,...
9888. Признаки НГВП 13.75 KB
  Признаки НГВП Признаки НГВП: 1)увеличение объема БР из скважины при неизменной подаче, т.е. БН выдают 20л/с, а станция контроля выдает 25л/с 2)увеличение скорости потока БР или расхода 3)когда БИ поднимают из скважины, то через определенный интерв...
9889. Оптимальное управление 291 KB
  Оптимальное управление ВВЕДЕНИЕ Задачи оптимального управления относятся к теории экстремальных задач, то есть задач определения максимальных и минимальных значений. Развитие теории экстремальных задач привело в XX веке к созданию линейного программ...