22534

Плоское напряженное состояние

Лекция

Производство и промышленные технологии

Тензор напряжений в этом случае имеет вид Геометрическая иллюстрация представлена на рис. Инварианты тензора напряжений равны а характеристическое уравнение принимает вид Корни этого уравнения равны 1 Нумерация корней произведена для случая Рис. Позиция главных напряжений Произвольная площадка характеризуется углом на рис. Если продифференцировать соотношение 2 по и приравнять производную нулю то придем к уравнению 4 что доказывает экстремальность главных напряжений.

Русский

2013-08-04

98.5 KB

7 чел.

Сопротивление материалов Сагадеев В.В.

Лекция № 7. Плоское напряженное состояние

   Рассмотрим важный для приложений случай плоского напряженного состояния, реализуемого, например, в плоскости Oyz. Тензор напряжений в этом случае имеет вид

   Геометрическая иллюстрация представлена на рис.1. При этом площадки х=const являются главными с соответствующими нулевыми главными напряжениями. Инварианты тензора напряжений равны , а характеристическое уравнение принимает вид

Корни этого уравнения равны

(1)

Нумерация корней произведена для случая



Рис.1. Исходное плоское напряженное состояние.

 



Рис.2. Позиция главных напряжений

 

   Произвольная площадка характеризуется углом на рис. 1, при этом вектор п имеет компоненты: , , nх=0. Нормальное и касательное напряжения на наклонной площадке выражаются через угол следующим образом:

(2)

(3)

   Так как на главных площадках касательное напряжение отсутствует, то, приравнивая нулю выражение (3), получим уравнение для определения угла между нормалью п и осью Оу

(4)

   Наименьший положительный корень уравнения (4) обозначим через . Так как tg(х)—периодическая функция с периодом , то имеем два взаимно ортогональных направления, составляющие углы и с осью Оу. Эти направления соответствуют взаимно перпендикулярным главным площадкам (рис. 2).

   Если продифференцировать соотношение (2) по и приравнять производную нулю, то придем к уравнению (4), что доказывает экстремальность главных напряжений.

   Для нахождения ориентации площадок с экстремальными касательными напряжениями приравняем нулю производную от выражения

,

откуда получим

(5)

 

Сравнивая соотношения (4) и (5), находим, что

   Это равенство возможно, если углы и отличаются на угол . Следовательно, направления площадок с экстремальными касательными напряжениями отличаются от направлений главных площадок на угол (рис. 3).



Рис.3. Экстремальность касательных напряжений

 

Величины экстремальных касательных напряжений получим после подстановки (5) в соотношение (3) с использованием формул

.

После некоторых преобразований получим

Сравнивая это выражение с полученными ранее значениями главных напряжений (2.21), выразим экстремальные касательные напряжения через главные напряжения

Аналогичная подстановка в (2) приводит к выражению для нормальных напряжений на площадках с

Полученные соотношения позволяют проводить направленно-ориентированный расчет конструкций на прочность в случае плоского напряженного состояния.

 

ТЕНЗОР ДЕФОРМАЦИИ

   Рассмотрим вначале случай плоской деформации (рис. 4). Пусть плоский элемент MNPQ перемещается в пределах плоскости и деформируется (изменяет форму и размеры). Координаты точек элемента до и после деформации отмечены на рисунке.



Рис.4. Плоская деформация.

 

По определению относительная линейная деформация в точке М в направлении оси Ох равна

Из рис. 4 следует

Учитывая, что MN=dx, получим

В случае малых деформаций, когда , , можно пренебречь квадратичными слагаемыми. С учетом приближенного соотношения

справедливого при x<<1, окончательно для малой деформации получим

Угловая деформация определяется как сумма углов и (4). В случае малых деформаций

Для угловой деформации имеем

Проводя аналогичные выкладки в общем случае трехмерной деформации, имеем девять соотношений

(6)

   связывающих линейные и угловые деформации с перемещениями. Эти соотношения носят название соотношений Коши.

Три линейных и шесть угловых деформаций (6) образуют тензор малых деформаций

(7)

   Этот тензор полностью определяет деформированное состояние твердого тела. Он обладает теми же свойствами, что и тензор напряжений. Свойство симметрии непосредственно следует из определения угловых деформаций. Главные значения и главные направления, а также экстремальные значения угловых деформаций и соответствующие им направления находятся теми же методами, что и для тензора напряжений.

   Инварианты тензора деформаций определяются аналогичными формулами, причем первый инвариант тензора малых деформаций имеет ясный физический смысл. До деформации его объем равен dV0 =dxdydz. Если пренебречь деформациями сдвига, которые изменяют форму, а не объем, то после деформации ребра будут иметь размеры

(рис. 4), а его объем будет равен

.

Относительное изменение объема

в пределах малых деформаций составит

что совпадает с определением первого инварианта. Очевидно, что изменение объема есть физическая величина, не зависящая от выбора системы координат.

   Так же, как и тензор напряжений, тензор деформаций можно разложить на шаровой тензор и девиатор. При этом первый инвариант девиатора равен нулю, т. е. девиатор характеризует деформацию тела без изменения его объема.


 

А также другие работы, которые могут Вас заинтересовать

48978. Автоматизація процесу сушіння деревини 270 KB
  Сушіння матеріалів є енергоємким процесом звязаним зі значною витратою палива пару а також електроенергії а отже використання високоточної автоматики дозволить значно скоротити термін сушіння та знизити енергетичні затрати. Також поширеним є сушіння круглих лісоматеріалів деталі опор ліній електропередачі зв'язки будівельні деталі. На даний час проблема автоматизації сушіння деревини вирішувалась шляхом використання застарілих як морально так і в фізичному плані приладів.
48979. Проектування бази даних готельного комплексу 334 KB
  Тема роботи: Проектування бази даних готельного комплексу Необхідно: спроектувати й реалізувати реляційну базу даних для централізованого зберігання інформації з метою полегшення і систематизації даних замовлень клієнтів. Моделювання реляційної бази даних.
48980. Методи прогнозування основних параметрів діяльності організації та їх ефективного застосування на прикладі ГК «Хлібодар» 279.5 KB
  Центральні поняття дослідження прогнозування основних параметрів діяльності організації. Сучасні наукові підходи до розуміння прогнозування основних Параметрів діяльності організації ПРОГНОЗУВАННЯ ОСНОВНИХ ПАРАМЕТРІВ ДІЯЛЬНОСТІ ОРГАНІЗАЦІЇ В СИСТЕМІ МЕНЕДЖМЕНТУ СУЧАСНОГО ПІДПРИЄМСТВА. Прогнозування в системі стратегічного менеджменту підприємства.
48982. Економічна ефективність виробництва ріпаку і шляхи її підвищення 320.5 KB
  Романенка Курсова робота Економічна ефективність виробництва ріпаку і шляхи її підвищення Студент відділення Економіка підприємства Наукові основи підвищення економічної ефективності виробництва ріпаку. Показники економічної ефективності виробництва ріпаку та методика їх визначення. Рівень виробництва ріпаку та його економічна ефективність.
48983. Проект установки для наплавлення 844.5 KB
  ВИБІР СПОСОБУ НАПЛАВЛЕННЯ РОЗРАХУНОК ОСНОВНИХ ПРИСТРОЇВ ОБЛАДНАННЯ ДЛЯ НАПЛАВЛЕННЯ Наплавлення – це процес нанесення за допомогою зварювання шару металу на поверхню виробу. Шляхом наплавлення можна отримати вироби зі зносостійкими жароміцними антифрикційними властивостями.
48984. Розрахунок структури симетричних стаціонарних електромагнітних полів 146 KB
  Симетричне тіло радіуса R перебуває в однорідному зовнішньому електричному полі E0, що перпендикулярне до його осі. Задано матеріальні характеристики навколишнього середовища. Одержати аналітичні вирази для потенціалів й і для полів Ei й Ee відповідно всередині та поза тілом.
48985. Розрахунок структури змінних електромагнітних полів у хвилеводі 550 KB
  Порожнина хвилеводу заповнена діелектриком, електрична проникність якого овжина хвилеводу в напрямку осі z не обмежена. Процес поширення електромагнітних хвиль у порожнині прямокутного хвилеводу розглядаємо, думаючи, що стінки хвилеводу виконані з надпровідного матеріалу ( = ).