22537

Влияние различных факторов на механические характеристики материалов

Лекция

Производство и промышленные технологии

Влияние процентного содержания углерода Влияние температуры окружающей среды. Повышенные температуры оказывают существенное влияние на такие механические характеристики конструкционных материалов как ползучесть и длительная прочность. Скорость релаксации напряжений возрастает при повышении температуры. Прочность углеродистых сталей с повышением температуры до 650 700oС снижается почти в десять раз.

Русский

2013-08-04

54.5 KB

21 чел.

Сопротивление материалов Сагадеев В.В.

Лекция № 10. Влияние различных факторов на механические характеристики материалов

   Зависимость механических характеристик конструкционных материалов от их химического состава, внешних условий и условий нагружения весьма многообразна; отметим наиболее существенные, характерные для типичных условий эксплуатации конструкций.

   Влияние содержания углерода. Введение различных легирующих добавок в металлы позволяет значительно повысить прочностные характеристики сплавов. На рис. 1 показано влияние процентного содержания углерода на механические свойства конструкционной стали. Как видно, с увеличением содержания углевода, временное сопротивление повышается в несколько раз; однако при этом значительно ухудшаются пластические свойства; относительное удлинение и относительное сужение при разрыве уменьшаются.



Рис.1. Влияние процентного содержания углерода

 

   Влияние температуры окружающей среды. Повышенные температуры оказывают существенное влияние на такие механические характеристики конструкционных материалов, как ползучесть и длительная прочность. Ползучестью называют медленное непрерывное возрастание пластической (остаточной) деформации под воздействием постоянных нагрузок. Длительной прочностью называется зависимость разрушающих напряжений (временного сопротивления) от длительности эксплуатации. Свойства ползучести и длительной прочности проявляются у углеродистых сталей при Т >300oС, для легированных сталей при Т>350oС. для алюминиевых сплавов при Т>100oС. Некоторые материалы проявляют эти свойства и при обычных температурах.

   Мерой оценки ползучести материала является предел ползучести — напряжение, при котором пластическая деформация за определенный промежуток времени достигает заданной величины. В некоторых случаях сопротивление ползучести оценивается величиной скорости деформации по прошествии заданного времени. При обозначении предела ползучести указывается величина деформации, время и температура испытаний. Например, для жаропрочного сплава ХН77ТЮР при температуре 700oС за время 100 часов и деформации ползучести 0,2% предел ползучести составляет 400 МПа: .

   Ползучесть сопровождается релаксацией напряжений — самопроизвольным уменьшением напряжений с течением времени при неизменной деформации. Скорость релаксации напряжений возрастает при повышении температуры. Мерой скорости релаксации служит время релаксации—промежуток времени, в течение которого напряжение уменьшается по сравнению с начальным значением в е=2,718 раза.

   Прочность материала при повышенных температурах оценивается пределом длительной прочности — напряжением, при котором материал разрушается не ранее заданного времени. При обозначении предела длительной прочности указывается продолжительность нагружения и температура испытания. Так, для сплава ХН77ТЮР при температуре 700oС и времени 1000 часов предел длительной прочности составляет . При кратковременных испытаниях для этого же сплава при температуре 700oС пределы прочности и текучести соответственно равны: .

   Влияние повышенных температур на характеристики прочности и пластичности можно проследить на рис. 2 и 3, где представлены осредненные результаты экспериментов для 1—углеродистой стали, содержащей 0,15% углерода; 2—0,40% углерода, 3—хромистой стали. Прочность углеродистых сталей с повышением температуры до 650—700oС снижается почти в десять раз. Наиболее резкое снижение наблюдается для алюминиевых сплавов. Наибольшими значениями при высоких температурах обладают литые жаропрочные сплавы, содержащие 70—80% никеля. Снижение пределов текучести с повышением температуры происходит примерно так же, как и снижение . Для углеродистых сталей характерным является ухудшение пластических свойств (охрупчивание) при температурах около 300oС (кривая 2 на рис. 3).



Рис.2. Влияние температуры на упругие свойства

 



Рис.3. Влияние температуры на пластические свойства

 

   Влияние температур на упругие свойства. Температурный коэффициент линейного расширения и температурный коэффициент модуля упругости связаны между собой соотношением

или

где r и m — постоянные, характеризующие параметры кристаллической решетки. На рис. 4 приведена зависимость безразмерного модуля упругости Е/Е0 некоторых конструкционных материалов от температуры (E0— модуль упругости материала при обычной температуре): 1 — нержавеющая сталь; 2 — алюминиевые сплавы, 3 — углеродистые стали, 4 — титановые сплавы.

   Для сталей с повышением температуры испытаний с 25 до 450oС модули упругости Е и G уменьшаются на 20—40%, при этом, начиная с 300—400oС наблюдается расхождение между значениями модулей, определенными при статических и динамических испытаниях.

   Изменение модулей упругости при малый колебаниях температуры (от –50 до +50oС) незначительно и им обычно пренебрегают.



Рис.4. Зависимость модуля упругости от температуры


 

А также другие работы, которые могут Вас заинтересовать

1066. Фотодатчики, их классификации, режимы работы и применение в биоинженерной технике 587 KB
  Основные понятия фотоэлектрических приборов. Основные характеристики фотоэлектрических преобразователей. Режимы работы датчиков. Области применения медико-биологической практике. Дополнительные возможности датчиков.
1067. Культура России второй половины ХІХ - первой половины ХХ столетия 550 KB
  Факторы развития культуры в России. Крестьянская реформа 19 февраля 1861 года. Мировой революционный процесс и передовая западноевропейская общественная мысль. Метод критического реализма. Мотив слияния с природой, погружения в ее тайны и красоту.
1068. База данных Кадры 323 KB
  База данных Кадры предназначается для учета личного состава, что необходимо на любом, даже на самом маленьком предприятии. База данных Кадры дает возможность облегчить работу отдела кадров и применять различные запросы для поиска необходимых сведений о сотрудниках.
1069. Бухгалтерский учет объектов основных средств. 411 KB
  Понятие и классификация основных средств. Организация системы бухгалтерского учета и анализ учетной политики. Методическое обеспечение бухгалтерского учета основных средств в ФГУП Росморпорт. Порядок проведения и учет результатов инвентаризацииосновных средств.
1070. Сетевое администрирование 411.5 KB
  Планирование сетевой инфраструктуры. Разработка механизма распространения политик безопасности на всю организацию. Выбор протоколов при планировании сетевой инфраструктуры. Планирование адресного пространства. Интеграция DNS зон и WINS. Защита сетей. Информационная безопасность.
1071. 454 ДМ Фрегат метеостанция Бохан 441.5 KB
  Природно-климатические условия Бохонского района. Виды, состав и объемы мелиоративных мероприятий, необходимых для усвоения земельного участка под полевой севооборот. Режим орошения сельскохозяйственных культур. Расчет дефицита водопотребления оросительной нормы многолетних трав по данным метеостанции Бохан. График полива сельскохозяйственных культур.
1072. Проектирование привода крутящего момента с минимальными потерями 280.5 KB
  Проектирование привода, который включает в себя электродвигатель, редуктор, муфту, ременную передачу колесо и сварную раму. Привод обеспечивает передачу крутящего момента от электродвигателя к исполнительному устройству с минимальными потерями и с заданной угловой скоростью на выходном валу редуктора.
1073. Переменная Shared Variable в LabVIEW 8 556.5 KB
  Освоить переменную Shared Variable, впервые представленную в LabVIEW 8, которая призвана облегчить жизнь разработчикам при создании межпрограммного обмена данными. Отдельный процесс для обмена данными через сеть.
1074. Работа с матрицами в MathCAD 595.5 KB
  Выполняя данную работу, мы научились вычислять матрицы, изучили панель операций с матрицами и векторами, научились вводить матрицы с разными размерами, вычисляли транспонированную матрицу. Так же научились вычислять определители матриц и проверили правильность решения матриц.