22539

Прочность и перемещения при центральном растяжении или сжатии

Лекция

Производство и промышленные технологии

Напомним что под растяжением сжатием понимают такой вид деформации стержня при котором в его поперечном сечении возникает лишь один внутренний силовой фактор продольная сила Nz. Поскольку продольная сила численно равна сумме проекций приложенных к одной из отсеченных частей внешних сил на ось стержня для прямолинейного стержня она совпадает в каждом сечении с осью Oz то растяжение сжатие имеет место если все внешние силы действующие по одну сторону от данного поперечного сечения сводятся к равнодействующей направленной вдоль...

Русский

2013-08-04

136 KB

5 чел.

Сопротивление материалов Сагадеев В.В.

Лекция № 12. Прочность и перемещения при центральном растяжении или сжатии

НАПРЯЖЕНИЯ ПРИ РАСТЯЖЕНИИ (СЖАТИИ) ПРИЗМАТИЧЕСКИХ СТЕРЖНЕЙ. РАСЧЕТ НА ПРОЧНОСТЬ

   Переходя к изучению введенных основных видов деформации стержней, ограничимся рассмотрением стержней постоянного поперечного сечения с прямолинейной осью, т. е. призматических стержней. Начнем с деформации растяжения (сжатия).

   Напомним, что под растяжением (сжатием) понимают такой вид деформации стержня, при котором в его поперечном сечении возникает лишь один внутренний силовой фактор — продольная сила Nz. Поскольку продольная сила численно равна сумме проекций, приложенных к одной из отсеченных частей внешних сил на ось стержня (для прямолинейного стержня она совпадает в каждом сечении с осью Oz), то растяжение (сжатие) имеет место, если все внешние силы, действующие по одну сторону от данного поперечного сечения, сводятся к равнодействующей, направленной вдоль оси стержня (рис. 1). Одна и та же продольная сила Nz при действии на различные части стержня (левую или правую) имеет противоположные направления. Знак Nz зависит от характера вызываемой ею деформации. Продольная сила считается положительной, если вызывает растяжение элемента (рис. 2, а), и она отрицательна, если вызывает сжатие (рис. 2,б).

Рис.1. Расчетная схема

Рис.2. а) Растяжение и б) сжатие

 

   Для того, чтобы сформулировать предпосылки теории растяжения (сжатия) призматического стержня, обратимся к эксперименту. Представим себе стержень, изготовленный из какого-либо податливого материала (например, резины), на боковую поверхность которого нанесена система продольных и поперечных рисок (рис. 3, а). Эта ортогональная система рисок остается таковой и после приложения растягивающей нагрузки (рис. 3, б). Поскольку поперечные риски являются следами поперечных сечений на поверхности стержня и остаются прямыми и перпендикулярными к оси стержня то это свидетельствует о выполнении гипотезы плоских сечений (Бернулли). С учетом гипотезы об отсутствии поперечного взаимодействия продольных волокон приходим к выводу, что деформация растяжения стержня сводится к одноосному растяжению его продольных волокон, и в поперечном сечении стержня возникают лишь нормальные напряжения а (рис. 4), индекс г у которых опускаем. Ортогональность продольных и поперечных рисок свидетельствует также об отсутствии сдвигов, а, следовательно, и связанных с ними касательных напряжений т в поперечных и продольных сечениях стержня.

Рис.3. Модель растянутого стержня

Рис.4. Связь напряжения и усилия

 

   Тогда продольная сила Nz равная сумме проекции внутренних сил, действующих в данном поперечном сечении площадью F (рис. 4) очевидно будет равна

.

   Это соотношение является уравнением равновесия статики, связывающим продольную силу Nz, и нормальное напряжение , которое в общем случае является функцией координат х и у и поэтому не может быть найдено из одного лишь 1 уравнения статики. Таким образом, задача определения напряжений даже в самом простом случае деформирования стержня (растяжении или сжатии) оказывается статически неопределимой.

   Необходимое для решения этой задачи дополнительное уравнение вытекает из гипотезы плоских сечений. Поскольку поперечные сечения стержня, оставаясь плоскими и перпендикулярными к оси стержня, в процессе деформирования лишь поступательно перемещаются вдоль оси стержня (что приводит к одинаковому удлинению всех продольных волокон), то приходим к уравнению =const, из которого ввиду однозначности связи и (для линейно-упругого материала это—закон Гука: .) вытекает, что

Решая совместно уравнения получим, что или

   Таким образом, при растяжении (сжатии) призматического стержня нормальные напряжения равномерно распределены по поперечному сечению, а касательные напряжения в сечениях отсутствуют, что является следствием гипотезы плоских сечений. Указанное, несмотря на, казалось бы, очевидность и простоту, является фундаментальным результатом, справедливым, строго говоря, лишь для призматического стержня. Однако в инженерной практике его используют и для приближенной оценки нормальных напряжений в стержнях переменного сечения. При этом, чтобы погрешность формулы была невелика, необходимо, чтобы площадь поперечного сечения стержня изменялась достаточно плавно вдоль его оси.

   Условие прочности при растяжении (сжатии) призматического стержня для стержня из пластического материала (т. е. материала, одинаково работающего на растяжение и сжатие) будет иметь вид:

(1)

где —допускаемое напряжение. Напряжение в условии (1) подставляется по модулю, так как знак в этом случае роли не играет. Для стержней из хрупких материалов, неодинаково сопротивляющихся растяжению и сжатию, знак напряжения имеет принципиальное значение, и условие прочности приходится формулировать отдельно для растяжения и сжатия

где и —напряжения растяжения и сжатия, а и — ответствующие им допускаемые напряжения.

   В практике инженерных расчетов, исходя из условия прочности, решаются три основные задачи механики материалов конструкций. В применении к случаю растяжения (сжатия) призматического стержня эти задачи формулируются следующим образом.

   Проверка прочности (поверочный расчет). Этот расчет проводится, если нагрузка (в нашем случае ее представляет Nz), сечение стержня F и его материал заданы.

Необходимо убедиться, что выполняется условие прочности

Проверочный расчет заключается в том, что определяется фактический коэффициент запаса прочности п и сравнивается с нормативным коэффициентом запаса [n]:

где — предельное (или опасное) напряжение, т. е. напряжение, вызывающее отказ элемента конструкции (напомним, что, например, для стержня из пластичного материала это—предел текучести или условный предел текучести ).

   Подбор сечения (проектный расчет). В этом расчете по Заданной нагрузке (Nz) определяются размеры поперечного сечения стержня (F) из заданного материала ( дано). Минимальное значение F получим, если в условии прочности (1) принять знак равенства:

Определение допускаемой нагрузки, то есть максимального значения нагрузки, которое допускает данный элемент конструкции (F и даны) при выполнении условия прочности.

 

ПОНЯТИЕ О КОНЦЕНТРАЦИИ НАПРЯЖЕНИЙ, ПРИНЦИП СЕН-ВЕНАНА

   Даже для призматического стержня равномерное распределение напряжений по поперечному сечению не всегда имеет место. Так, отклонения от равномерного распределения напряжений наблюдаются в окрестности сечений, содержащих вырезы, выточки, отверстия, трещины, в местах резкого изменения поперечного сечения, а также в местах приложения сосредоточенных сил и т. п. Неравномерное распределение напряжений в указанных местах является следствием искажения плоскостей поперечных сечений или их депланации.

   Поясним это явление на примере подверженной растяжению полосы из податливого материала с круговым отверстием, на поверхности которой нанесены продольные и поперечные риски (рис. 5, а). В зоне отверстия имеет место депланация поперечных сечений, вызванная неравномерным растяжением продольных волокон (рис.5, б). При этом наибольшие удлинения и соответственно напряжения max получают волокна возле отверстия. Такое местное увеличение напряжений возле вырезов, выточек, отверстий и т. п., а также в местах приложения сосредоточенных сил, называется у концентрацией напряжений, а источники концентрации напряжений (вырезы, выточки, отверстия и т. п.) получили название концентраторов напряжений.



Рис.5. Концентрация напряжений: а) исходное состояние, б) деформированное состояние, в) распространение напряжений

 

   Рассмотренными методами механики деформированного тела, опирающимися на гипотезу плоских сечений, задачи о распределении напряжений в зонах концентрации напряжений не решаются. Такие задачи решаются методами теории упругости или исследуются экспериментально. При этом для практических расчетов вводится так называемый теоретический коэффициент концентрации напряжений , представляющий собой отношение максимальных max и номинальных напряжений: , где номинальные напряжения определяются без учета концентрации напряжений. В приведенном примере растяжения полосы с отверстием , a Fnt площадь поперечного сечения полосы, уменьшенная за счет отверстия («нетто»). Таким образом, играют роль поправочных коэффициентов.

   Однако, как показали эксперименты и точные решения задач теории упругости, местные отклонения от равномерного распределения напряжений, вызванные концентрацией напряжений, быстро затухают по мере удаления от сечения с концентратором, и на расстояниях порядка ширины сечения распределение напряжений можно считать практически равномерным (рис. 5, в). Отмеченное свойство является частным случаем широко используемого практически во всех разделах механики деформируемого твердого тела (в том числе и теории упругости) принципа Сен-Венана

 

ОПРЕДЕЛЕНИЕ ДЕФОРМАЦИЙ И ПЕРЕМЕЩЕНИЙ

   Определим упругие деформации стержня предполагая, что изменение его длины при растяжении , называемое абсолютной продольной деформацией или удлинением, мало по сравнению с его первоначальной длиной . Тогда относительная продольная деформация будет равна

   Учитывая, что согласно закону Гука для одноосного растяжения (сжатия)

,

где Е—;модуль продольной упругости материала стержня, а нормальные напряжения определяются по формуле (в нашем случае Nz=P), для абсолютной деформации получаем

(2)

   Произведение EF принято называть жесткостью поперечного сечения стержня при растяжении (сжатии), так как удлинение обратно пропорционально EF.



Рис.6. Модели продольной и поперечной деформаций

 

   Как показывают эксперименты, при растяжении стержня размеры его поперечного сечения уменьшаются (рис. 6), а при сжатии — увеличиваются. Это явление получило название эффекта Пуассона.

   По аналогии с продольной деформацией изменение размеров поперечного сечения (на рис. 6 ) будем называть абсолютной поперечной деформацией, а — относительной поперечной деформацией. Относительные продольная и поперечная деформации, имеющие противоположные знаки, связаны между собой коэффициентом , являющимся константой материала и называемым коэффициентом поперечной деформации или коэффициентом Пуассона:

Как известно, для изотропного материала .

   Формула (2) для удлинения стержня применима только в случае, когда по длине стержня ни жесткость поперечного сечения, ни продольная сила не изменяются (EF=const, Nz =const). Удлинение стержня со ступенчатым изменением EF и Nz (рис. 7) может быть определено как сумма удлинений ступеней, у которых EF и Nz постоянны:

(индекс k у модуля продольной упругости означает, что участки стержня могут быть изготовлены из различных материалов). В случае, когда Nz и EF меняются по длине стержня l непрерывно и их можно считать постоянными лишь в пределах ступеней длиной dz, обобщая формулу эту, получаем

   В качестве тестов для практики расчетов определенных интегралов рекомендую воспользоваться системой входных тестов Т-5, указанных в ПРИЛОЖЕНИИ.



Рис.7. Ступенчатый брус

 

   С упругими продольными деформациями стержня при растяжении (сжатии) связаны продольные перемещения его сечений. На рис. 8 приведены три случая определения таких перемещений, откуда видно, что перемещения поперечных сечений численно равны удлинениям заштрихованных частей стержня:

  •  перемещение свободного торцевого сечения 1—1 при неподвижном другом торцевом сечении (рис. 8, а) численно равно удлинению стержня;
  •  перемещение промежуточного сечения 2—2 (рис. 8, б) численно равно удлинению части стержня, заключенной между данным сечением и сечением неподвижным;
  •  взаимное перемещение сечений 3—3 и 44 (рис, 8, в) численно равно удлинению части стержня, заключенной между этими сечениями.



Рис.8. Модели перемещений

 

НАПРЯЖЕННОЕ СОСТОЯНИЕ ПРИ РАСТЯЖЕНИИ (СЖАТИИ)

   Напряженное состояние при растяжении стержня является одноосным (рис. 9, а). Поскольку на поперечных и продольных площадках касательные напряжения не возникают, то эти площадки являются главными. Причем в случае растяжения , а в случае сжатия .



Рис.9. Напряженное состояние: а ) исходный элемент, б ) компоненты напряжений

 

   Напряжения на площадках, наклоненных к оси стержня под углом , определяются по формулам для упрощенного плоского напряженного состояния:

   Площадки с экстремальными касательными напряжениями (рис. 9, б), как известно, наклонены по отношению к исходным под углами (следует и из формулы для ) и равны .

   Именно с действием экстремальных связывается появление на боковой поверхности образца из малоуглеродистой стали, испытываемого на растяжение, линий скольжения, ориентированных под углом к оси образца. На площадках с экстремальными действуют и нормальные напряжения, равные .


 

А также другие работы, которые могут Вас заинтересовать

24434. Функционирование NAT. Функционирование Proxy 999 KB
  Диаграммы рисуют для визуализации системы с разных точек зрения. Теоретически диаграммы могут содержать любые комбинации сущностей и отношений. Всего UML предлагает девять дополняющих друг друга диаграмм входящих в различные модели: диаграммы вариантов использования; диаграммы классов; диаграммы пакетов: диаграммы последовательностей действий; диаграммы кооперации: диаграммы деятельностей: диаграммы состояний объектов: диаграммы компонентов: диаграммы размещения. Диаграммы вариантов использования.
24435. Служба DNS. Иерархические доменные имена. Полномочные серверы DNS 107.5 KB
  Служба DNS. Полномочные серверы DNS. Служба DNS Широковещательный способ установления соответствия между символьными именами и локальными адресами хорошо работает только в небольшой локальной сети не разделенной на подсети. Таким решением стала централизованная служба DNS Domain Name System система доменных имен основанная на распределенной базе отображений доменное имя IPадрес.
24436. Назначение и возможности макросредств в ассемблере 146 KB
  Он вставляет вместо вызова команды которые соответствуют макросу. Макроопределение группа команд определяющая действие макрокоманды. При описании макрокоманды используется оператор MACRO. Макрокоманды позволяют сократить размер выполняемой программы за счет описания повторяющихся участков однажды.
24437. Теория дислокаций 231 KB
  Дефектами кристалла называют всякое нарушение трансляционной симметрии кристалла — идеальной периодичности кристаллической решётки. Различают несколько видов дефектов по размерности. А именно, бывают нульмерные (точечные), одномерные (линейные), двумерные (плоские) и трёхмерные (объемные) дефекты.
24438. Основные функции компиляторов 209 KB
  Система прерывания ОМЭВМ. Непосредственной причиной такого переключения процессора с одной программы на другую является сигнал прерывания причем характер новой программы которую процессор начинает выполнять в результате воздействия сигнала прерывания и которая называется программой обработки прерывания зависит от источника возникновения этого сигнала. В большинстве случаев возникновение сигналов прерывания не планируется в выполняемой текущей программе а является по отношению к ней независимым или внешним событием. В зависимости от...
24439. Отладчики программ 43.5 KB
  Turbo Debugger представляет собой набор инструментальных средств, позволяющий отлаживать программы на уровне исходного текста и предназначенный для программистов, использующих семейство компиляторов Borland.
24440. Методы оптимизации и «раскрутки» web-сайтов 26 KB
  Поисковая оптимизация 4. Оптимизация числа ключевых слов на странице Ключевые слова фразы должны встречаться в тексте как минимум34раза. Оптимизация плотности ключевых слов Плотность ключевого слова на странице показывает относительную частоту содержания слова в тексте. 4 Оптимизация расположения ключевых слов на странице Чем ближе ключевое слово или фраза к началу документа тем больший вес они получают в глазах поисковой системы.
24441. Преобразование Фурье и его основные свойства 157.5 KB
  Большинство ОМЭВМ представляет собой Гарвардскую архитектуру хранение программных кодов и данных происходит в раздельных областях памяти. Объем ОЗУ памяти даны меньше объема ПЗУ память программ. При выполнении прмы процессор осуществляет выбоку из памяти команд данных и запись результатов при этом он адресуется к ячейкам памяти по их номерам. Ячейки памяти имеют свой номер адрес памяти а совокупность адресов памяти состовляют адресное пространство.
24442. Преобразование Лапласа, Представление дискретной информации и способы ее отображения 93.5 KB
  Система команд однокристальной ЭВМ и способы адресации операндов Команда процессора – код определяющий действие устройства при выполнении заданных операций фций. Способ адресации – способ указания положения данных над которыми производятся операция адресация операндов либо способ определения точки перехода в командах передачи управления адресация переходов. При формировании команды один и тот же код операции может использоваться при различных способах адресации Пример на системе команд MCS51. Элементы в квадратных скобках могут...