22539

Прочность и перемещения при центральном растяжении или сжатии

Лекция

Производство и промышленные технологии

Напомним что под растяжением сжатием понимают такой вид деформации стержня при котором в его поперечном сечении возникает лишь один внутренний силовой фактор продольная сила Nz. Поскольку продольная сила численно равна сумме проекций приложенных к одной из отсеченных частей внешних сил на ось стержня для прямолинейного стержня она совпадает в каждом сечении с осью Oz то растяжение сжатие имеет место если все внешние силы действующие по одну сторону от данного поперечного сечения сводятся к равнодействующей направленной вдоль...

Русский

2013-08-04

136 KB

5 чел.

Сопротивление материалов Сагадеев В.В.

Лекция № 12. Прочность и перемещения при центральном растяжении или сжатии

НАПРЯЖЕНИЯ ПРИ РАСТЯЖЕНИИ (СЖАТИИ) ПРИЗМАТИЧЕСКИХ СТЕРЖНЕЙ. РАСЧЕТ НА ПРОЧНОСТЬ

   Переходя к изучению введенных основных видов деформации стержней, ограничимся рассмотрением стержней постоянного поперечного сечения с прямолинейной осью, т. е. призматических стержней. Начнем с деформации растяжения (сжатия).

   Напомним, что под растяжением (сжатием) понимают такой вид деформации стержня, при котором в его поперечном сечении возникает лишь один внутренний силовой фактор — продольная сила Nz. Поскольку продольная сила численно равна сумме проекций, приложенных к одной из отсеченных частей внешних сил на ось стержня (для прямолинейного стержня она совпадает в каждом сечении с осью Oz), то растяжение (сжатие) имеет место, если все внешние силы, действующие по одну сторону от данного поперечного сечения, сводятся к равнодействующей, направленной вдоль оси стержня (рис. 1). Одна и та же продольная сила Nz при действии на различные части стержня (левую или правую) имеет противоположные направления. Знак Nz зависит от характера вызываемой ею деформации. Продольная сила считается положительной, если вызывает растяжение элемента (рис. 2, а), и она отрицательна, если вызывает сжатие (рис. 2,б).

Рис.1. Расчетная схема

Рис.2. а) Растяжение и б) сжатие

 

   Для того, чтобы сформулировать предпосылки теории растяжения (сжатия) призматического стержня, обратимся к эксперименту. Представим себе стержень, изготовленный из какого-либо податливого материала (например, резины), на боковую поверхность которого нанесена система продольных и поперечных рисок (рис. 3, а). Эта ортогональная система рисок остается таковой и после приложения растягивающей нагрузки (рис. 3, б). Поскольку поперечные риски являются следами поперечных сечений на поверхности стержня и остаются прямыми и перпендикулярными к оси стержня то это свидетельствует о выполнении гипотезы плоских сечений (Бернулли). С учетом гипотезы об отсутствии поперечного взаимодействия продольных волокон приходим к выводу, что деформация растяжения стержня сводится к одноосному растяжению его продольных волокон, и в поперечном сечении стержня возникают лишь нормальные напряжения а (рис. 4), индекс г у которых опускаем. Ортогональность продольных и поперечных рисок свидетельствует также об отсутствии сдвигов, а, следовательно, и связанных с ними касательных напряжений т в поперечных и продольных сечениях стержня.

Рис.3. Модель растянутого стержня

Рис.4. Связь напряжения и усилия

 

   Тогда продольная сила Nz равная сумме проекции внутренних сил, действующих в данном поперечном сечении площадью F (рис. 4) очевидно будет равна

.

   Это соотношение является уравнением равновесия статики, связывающим продольную силу Nz, и нормальное напряжение , которое в общем случае является функцией координат х и у и поэтому не может быть найдено из одного лишь 1 уравнения статики. Таким образом, задача определения напряжений даже в самом простом случае деформирования стержня (растяжении или сжатии) оказывается статически неопределимой.

   Необходимое для решения этой задачи дополнительное уравнение вытекает из гипотезы плоских сечений. Поскольку поперечные сечения стержня, оставаясь плоскими и перпендикулярными к оси стержня, в процессе деформирования лишь поступательно перемещаются вдоль оси стержня (что приводит к одинаковому удлинению всех продольных волокон), то приходим к уравнению =const, из которого ввиду однозначности связи и (для линейно-упругого материала это—закон Гука: .) вытекает, что

Решая совместно уравнения получим, что или

   Таким образом, при растяжении (сжатии) призматического стержня нормальные напряжения равномерно распределены по поперечному сечению, а касательные напряжения в сечениях отсутствуют, что является следствием гипотезы плоских сечений. Указанное, несмотря на, казалось бы, очевидность и простоту, является фундаментальным результатом, справедливым, строго говоря, лишь для призматического стержня. Однако в инженерной практике его используют и для приближенной оценки нормальных напряжений в стержнях переменного сечения. При этом, чтобы погрешность формулы была невелика, необходимо, чтобы площадь поперечного сечения стержня изменялась достаточно плавно вдоль его оси.

   Условие прочности при растяжении (сжатии) призматического стержня для стержня из пластического материала (т. е. материала, одинаково работающего на растяжение и сжатие) будет иметь вид:

(1)

где —допускаемое напряжение. Напряжение в условии (1) подставляется по модулю, так как знак в этом случае роли не играет. Для стержней из хрупких материалов, неодинаково сопротивляющихся растяжению и сжатию, знак напряжения имеет принципиальное значение, и условие прочности приходится формулировать отдельно для растяжения и сжатия

где и —напряжения растяжения и сжатия, а и — ответствующие им допускаемые напряжения.

   В практике инженерных расчетов, исходя из условия прочности, решаются три основные задачи механики материалов конструкций. В применении к случаю растяжения (сжатия) призматического стержня эти задачи формулируются следующим образом.

   Проверка прочности (поверочный расчет). Этот расчет проводится, если нагрузка (в нашем случае ее представляет Nz), сечение стержня F и его материал заданы.

Необходимо убедиться, что выполняется условие прочности

Проверочный расчет заключается в том, что определяется фактический коэффициент запаса прочности п и сравнивается с нормативным коэффициентом запаса [n]:

где — предельное (или опасное) напряжение, т. е. напряжение, вызывающее отказ элемента конструкции (напомним, что, например, для стержня из пластичного материала это—предел текучести или условный предел текучести ).

   Подбор сечения (проектный расчет). В этом расчете по Заданной нагрузке (Nz) определяются размеры поперечного сечения стержня (F) из заданного материала ( дано). Минимальное значение F получим, если в условии прочности (1) принять знак равенства:

Определение допускаемой нагрузки, то есть максимального значения нагрузки, которое допускает данный элемент конструкции (F и даны) при выполнении условия прочности.

 

ПОНЯТИЕ О КОНЦЕНТРАЦИИ НАПРЯЖЕНИЙ, ПРИНЦИП СЕН-ВЕНАНА

   Даже для призматического стержня равномерное распределение напряжений по поперечному сечению не всегда имеет место. Так, отклонения от равномерного распределения напряжений наблюдаются в окрестности сечений, содержащих вырезы, выточки, отверстия, трещины, в местах резкого изменения поперечного сечения, а также в местах приложения сосредоточенных сил и т. п. Неравномерное распределение напряжений в указанных местах является следствием искажения плоскостей поперечных сечений или их депланации.

   Поясним это явление на примере подверженной растяжению полосы из податливого материала с круговым отверстием, на поверхности которой нанесены продольные и поперечные риски (рис. 5, а). В зоне отверстия имеет место депланация поперечных сечений, вызванная неравномерным растяжением продольных волокон (рис.5, б). При этом наибольшие удлинения и соответственно напряжения max получают волокна возле отверстия. Такое местное увеличение напряжений возле вырезов, выточек, отверстий и т. п., а также в местах приложения сосредоточенных сил, называется у концентрацией напряжений, а источники концентрации напряжений (вырезы, выточки, отверстия и т. п.) получили название концентраторов напряжений.



Рис.5. Концентрация напряжений: а) исходное состояние, б) деформированное состояние, в) распространение напряжений

 

   Рассмотренными методами механики деформированного тела, опирающимися на гипотезу плоских сечений, задачи о распределении напряжений в зонах концентрации напряжений не решаются. Такие задачи решаются методами теории упругости или исследуются экспериментально. При этом для практических расчетов вводится так называемый теоретический коэффициент концентрации напряжений , представляющий собой отношение максимальных max и номинальных напряжений: , где номинальные напряжения определяются без учета концентрации напряжений. В приведенном примере растяжения полосы с отверстием , a Fnt площадь поперечного сечения полосы, уменьшенная за счет отверстия («нетто»). Таким образом, играют роль поправочных коэффициентов.

   Однако, как показали эксперименты и точные решения задач теории упругости, местные отклонения от равномерного распределения напряжений, вызванные концентрацией напряжений, быстро затухают по мере удаления от сечения с концентратором, и на расстояниях порядка ширины сечения распределение напряжений можно считать практически равномерным (рис. 5, в). Отмеченное свойство является частным случаем широко используемого практически во всех разделах механики деформируемого твердого тела (в том числе и теории упругости) принципа Сен-Венана

 

ОПРЕДЕЛЕНИЕ ДЕФОРМАЦИЙ И ПЕРЕМЕЩЕНИЙ

   Определим упругие деформации стержня предполагая, что изменение его длины при растяжении , называемое абсолютной продольной деформацией или удлинением, мало по сравнению с его первоначальной длиной . Тогда относительная продольная деформация будет равна

   Учитывая, что согласно закону Гука для одноосного растяжения (сжатия)

,

где Е—;модуль продольной упругости материала стержня, а нормальные напряжения определяются по формуле (в нашем случае Nz=P), для абсолютной деформации получаем

(2)

   Произведение EF принято называть жесткостью поперечного сечения стержня при растяжении (сжатии), так как удлинение обратно пропорционально EF.



Рис.6. Модели продольной и поперечной деформаций

 

   Как показывают эксперименты, при растяжении стержня размеры его поперечного сечения уменьшаются (рис. 6), а при сжатии — увеличиваются. Это явление получило название эффекта Пуассона.

   По аналогии с продольной деформацией изменение размеров поперечного сечения (на рис. 6 ) будем называть абсолютной поперечной деформацией, а — относительной поперечной деформацией. Относительные продольная и поперечная деформации, имеющие противоположные знаки, связаны между собой коэффициентом , являющимся константой материала и называемым коэффициентом поперечной деформации или коэффициентом Пуассона:

Как известно, для изотропного материала .

   Формула (2) для удлинения стержня применима только в случае, когда по длине стержня ни жесткость поперечного сечения, ни продольная сила не изменяются (EF=const, Nz =const). Удлинение стержня со ступенчатым изменением EF и Nz (рис. 7) может быть определено как сумма удлинений ступеней, у которых EF и Nz постоянны:

(индекс k у модуля продольной упругости означает, что участки стержня могут быть изготовлены из различных материалов). В случае, когда Nz и EF меняются по длине стержня l непрерывно и их можно считать постоянными лишь в пределах ступеней длиной dz, обобщая формулу эту, получаем

   В качестве тестов для практики расчетов определенных интегралов рекомендую воспользоваться системой входных тестов Т-5, указанных в ПРИЛОЖЕНИИ.



Рис.7. Ступенчатый брус

 

   С упругими продольными деформациями стержня при растяжении (сжатии) связаны продольные перемещения его сечений. На рис. 8 приведены три случая определения таких перемещений, откуда видно, что перемещения поперечных сечений численно равны удлинениям заштрихованных частей стержня:

  •  перемещение свободного торцевого сечения 1—1 при неподвижном другом торцевом сечении (рис. 8, а) численно равно удлинению стержня;
  •  перемещение промежуточного сечения 2—2 (рис. 8, б) численно равно удлинению части стержня, заключенной между данным сечением и сечением неподвижным;
  •  взаимное перемещение сечений 3—3 и 44 (рис, 8, в) численно равно удлинению части стержня, заключенной между этими сечениями.



Рис.8. Модели перемещений

 

НАПРЯЖЕННОЕ СОСТОЯНИЕ ПРИ РАСТЯЖЕНИИ (СЖАТИИ)

   Напряженное состояние при растяжении стержня является одноосным (рис. 9, а). Поскольку на поперечных и продольных площадках касательные напряжения не возникают, то эти площадки являются главными. Причем в случае растяжения , а в случае сжатия .



Рис.9. Напряженное состояние: а ) исходный элемент, б ) компоненты напряжений

 

   Напряжения на площадках, наклоненных к оси стержня под углом , определяются по формулам для упрощенного плоского напряженного состояния:

   Площадки с экстремальными касательными напряжениями (рис. 9, б), как известно, наклонены по отношению к исходным под углами (следует и из формулы для ) и равны .

   Именно с действием экстремальных связывается появление на боковой поверхности образца из малоуглеродистой стали, испытываемого на растяжение, линий скольжения, ориентированных под углом к оси образца. На площадках с экстремальными действуют и нормальные напряжения, равные .


 

А также другие работы, которые могут Вас заинтересовать

32290. Особенности реализации права в условиях отсутствия или неполноты правового регулирования (пробелов в праве). Аналогия закона и аналогия права как способы преодоления пробелов. Их понятие, правовые основания для использования и пределы применения 39 KB
  Особенности реализации права в условиях отсутствия или неполноты правового регулирования пробелов в праве. Аналогия закона и аналогия права как способы преодоления пробелов. Именно поэтому нигде в мире никогда не было и нет беспробельного идеального права адекватно отражающего действительность. Пробелы в праве вызываются в основном следующими причинами: а относительной консервативностью права по сравнению с более активной динамикой общественных отношений; б несовершенством законов и юридической техники; в бесконечным разнообразием...
32291. Правоприменительные акты. Их понятие и место среди других правовых актов. Требования к актам. Форма и структура правоприменительных актов 35 KB
  Их понятие и место среди других правовых актов. Форма и структура правоприменительных актов. Правоприменительный акт один из видов правовых актов. Назначение актов применения права вытекает из их названия они призваны применять юридические нормы к соответствующим лицам но ни в коем случае не создавать новые нормы и не изменять или дополнять старые; это не их функция.
32292. Толкование права 90 KB
  Толкование права Толкование правовых норм важнейшее условие их правильного понимания и применения. Толкование древнейший правовой институт. В данном случае под толкованием понимается выяснение точного смысла содержания толкуемой правовой нормы. При этом толкование прибавляя новое знание о норме ни в коей мере не изменяет и не заменяет ее; тем более не создает новой.
32293. Понятие законности. Ее роль в процессе развития государства. Требования и гарантии законности в современных государствах 56 KB
  понималась не только как соблюдение существующих законов независимо от того о ком идет речь но прежде всего как осуществление власти основанное на прочно установленных общеизвестных законах в силу всеобщего согласия признаваемых в качестве основных критериев для определения того что справедлива и что несправедливо критериев которыми должны руководствоваться суды при разрешении конфликтов касающихся жизни общества . Ленина который сначала писал о том что диктатура пролетариата власть не связанная никакими законами а затем...
32294. Понятие и основные черты правопорядка. Соотношение правопорядка и законности 48 KB
  Соотношение правопорядка и законности Правопорядок это система общественных отношений которая устанавливается в результате точного и полного осуществления предписаний правовых норм всеми субъектами права. Правопорядок составляет реальную основу современной цивилизованной жизни общества. Нормы права это нормативная предпосылка правопорядка первичное звено механизма правового регулирования моделирующее идеальный правопорядок. Правопорядок есть реализованная система права.
32295. Правомерное поведение. Понятие. Социальная и юридическая природа. Виды правомерного поведения и их характеристика 46 KB
  Правомерное поведение. Правомерное поведение охватывает прежде всего наиболее сознательную часть населения иными словами законопослушных или правопослушных граждан. Такое поведение необходимое условие организованного человеческого общежития взаимоприемлемых цивилизованных отношений. Следовательно правомерное поведение это такое поведение которое соответствует требованиям юридических норм.
32296. Понятие правонарушения и его признаки. Виды правонарушений. Основные пути борьбы с правонарушениями в современном обществе 30.5 KB
  Правонарушение является основным видом неправомерного поведения другой вид которого объективно противоправное деяние и соответственно оно является разновидностью правового то есть юридически значимого поведения поскольку относительно последнего неправомерное поведение наряду с правомерным выступает как его вид. Правонарушению присущи следующие признаки: правонарушение это всегда деяние и только деяние то есть действие бездействие или вербальное словесное поведение. На это обращал внимание еще Гегель; правонарушение это...
32297. Понятие, признаки и отличия юридической ответственности от иных видов социальной ответственности и других мер гос.принуждения. Вопрос об ответственности без вины. Перспективная и ретроспективная ответственность 53 KB
  Перспективная и ретроспективная ответственность. Юридическая ответственность один из видов социальной ответственности индивида Под социальной ответственностью понимается объективная необходимость отвечать за нарушение социальных норм. Социальная ответственность сложная собирательная нравственноправовая философская и этикопсихологическая категория изучаемая многими науками но под разными углами зрения. Различают моральную политическую юридическую общественную гражданскую профессиональную и другие виды ответственности которые в...
32298. Виды юридической ответственности по российскому праву. Их понятие и характеристика 30.5 KB
  Виды юридической ответственности по российскому праву. Отмеченные виды ответственности носят публичный характер т. субъектом привлечения к уголовной и административной ответственности выступает государство. Уголовной ответственности подлежит то лицо которое совершило преступление.