22540

Расчет статически неопределимых систем по допускаемым нагрузкам

Лекция

Производство и промышленные технологии

Расчет статически неопределимых систем по допускаемым нагрузкам. Применение к статически определимым системам. Расчетная схема статически определимой стержневой системы Рассчитывая эту систему обычным путем найдем усилия N1 = N2 no формуле: из равновесия узла А. Это всегда имеет место для статически определимых конструкций при равномерном распределении напряжений когда материал по всему сечению используется полностью.

Русский

2013-08-04

116.5 KB

0 чел.

Сопротивление материалов Сагадеев В.В.

Лекция № 13. Расчет статически неопределимых систем по допускаемым нагрузкам.

Применение к статически определимым системам.

   В предыдущем изложении методов расчета мы исходили из основного условия прочности . Это неравенство требует выбора размеров конструкции с таким расчетом, чтобы наибольшее напряжение в самом опасном месте не превосходило допускаемого.

   Но можно стать на другую точку зрения. Можно задать условие, чтобы действительная нагрузка на всю конструкцию не превосходила некоторой допускаемой величины. Условие это можно выразить таким неравенством:

   За допускаемую нагрузку надо выбрать некоторую часть той нагрузки, при которой конструкция перестанет функционировать правильно, перестанет выполнять свой назначение. Такая нагрузка обычно называется предельной, иногда—разрушающей в широком смысле слова (под разрушением конструкции подразумевают прекращение ее нормальной работы).

   В качестве примера возьмем систему из двух стальных стержней АВ и АС, (рис.1), нагруженных силой P.



Рис.1. Расчетная схема статически определимой стержневой системы

 

Рассчитывая эту систему обычным путем, найдем усилия N1 = N2 no формуле:

(из равновесия узла А). Отсюда площадь каждого из стержней равна:

По способу допускаемых нагрузок имеем:

   Введя в качестве коэффициента запаса для конструкции в целом ту же величину k, которая была принята в качестве коэффициента запаса для напряжений, мы получим, что величина

Предельной, опасной величиной Pпр будет та, при которой напряжения в стержнях дойдут до предела текучести:

Таким образом, допускаемая величина Р равна:

Условие прочности принимает вид

а учитывая, что

,

получаем:

Отсюда:

   Таким образом, расчет по допускаемым нагрузкам привел в данном случае к тем же результатам, что и расчет по допускаемым напряжениям. Это всегда имеет место для статически определимых конструкций при равномерном распределении напряжений, когда материал по всему сечению используется полностью.

 

Расчет статически неопределимых систем по способу допускаемых нагрузок.

   Совсем другие результаты мы получим, если будем применять способ допускаемых нагрузок к статически неопределимым системам, стержни которых изготовлены из материала, обладающего способностью к большим пластическим деформациям, например из малоуглеродистой стали.

В качестве примера рассмотрим систему из трех стержней, нагруженных силой Q (рис. 2). Пусть все стержни сделаны из малоуглеродистой стали с пределом текучести . Длины крайних стержней, как и выше, обозначим ; длину среднего . Допускаемое напряжение



Рис.2. Расчетная схема однократно статически неопределимой стержневой системы.

 

Как и раньше, при расчете этой статически неопределимой системы зададимся отношением площадей стержней; примем, что все три стержня будут иметь одинаковую площадь F. Получим:

  1.  
  2.  
  3.  

Используя закон Гука, получим:

Следовательно:

Так как , средний стержень напряжен больше, чем крайние; поэтому подбор площади сечения F надо произвести по формуле:

Ту же величину площади надо дать и боковым стержням; в них получается некоторый дополнительный запас.

Применим способ допускаемых нагрузок; условием прочности будет:

   Что в данном случае следует понимать под предельной нагрузкой конструкции? Так как конструкция выполнена из материала, имеющего площадку текучести, то, по аналогии с простым растяжением стержня из такого материала, за предельную нагрузку следует взять груз, соответствующий достижению состояния текучести для всей конструкции в целом. Назовем эту нагрузку . Пока сила Q не достигла этого значения, для дальнейшей деформации (опускания точки A) требуется возрастание нагрузки. Когда же Q сделается равным , дальнейший рост деформаций будет происходить уже без увеличения нагрузки, — конструкция выйдет из строя.

   Для определения величины рассмотрим постепенный ход деформации нашей стержневой системы. Так как средний стержень напряжен сильнее крайних, то в нем раньше, чем в других, напряжение дойдет до предела текучести. Нагрузку, соответствующую этому моменту, обозначим QТ; она будет равна:

где — усилие в среднем стержне, соответствующее его пределу текучести.

   Напряжения в крайних стержнях, имеющих ту же площадь, в этот момент еще не дойдут до предела текучести, и эти стержни будут упруго сопротивляться дальнейшей деформации. Для того чтобы эта деформация происходила, необходимо дальнейшее увеличение нагрузки до тех пор, пока в крайних стержнях напряжения тоже не дойдут до предела текучести. Лишь тогда будет достигнута предельная грузоподъемность конструкции .

   Так как при нагрузке QТ напряжения в среднем стержне дойдут уже до предела текучести , то при дальнейшем возрастании груза они, а стало быть и усилие N3, останутся без увеличения. Наша статически неопределимая система превратится в статически определимую, состоящую из двух стержней АВ и АС и нагруженную в точке А силой Q, направленной вниз, и известным усилием , равным (Рис.3).



Рис.3. Эквивалентная статически определимая система

 

Такая схема работы нашей конструкции будет иметь место, пока

   Для иллюстрации хода деформации рассматриваемой конструкции изобразим графически зависимость между силой Q и перемещением f точки А (Рис. 4). Пока опускание точки А равно удлинению среднего стержня и определяется формулой



Рис.4. Динамика деформации в зависимости от нагрузочной способности системы

 

   Как только Q будет заключаться в промежутке перемещение точки А должно быть вычислено, как опускание этого узла в системе двух стержней АС и АВ, нагруженных в точке А силой . Так как:

и, в свою очередь:

Отсюда

   Для f12 (на втором участке) получаем уравнение прямой, но уже не проходящей через начало координат. После достижения нагрузкой Q значения напряжения в крайних стержнях достигнут предела текучести, и система будет деформироваться без увеличения нагрузки. График перемещения идет теперь параллельно оси абсцисс.

   Для определения предельной грузоподъемности всей системы мы должны для системы двух стержней, нагруженных силой , найти то значение Q, при котором напряжения и в крайних стержнях дойдут до предела текучести. Такая задача решена в предыдущем параграфе; подставляя в выражение (а) § 26 вместо Р величину , получаем:

Отсюда

Допускаемая нагрузка будет равна

а учитывая, что

,

получаем

Окончательно:

и

Эта величина меньше, чем полученная обычным методом расчета, т. е.

При (сталь) получаем: по обычному способу

по способу допускаемых нагрузок:

   Таким образом, метод расчета по допускаемым нагрузкам позволяет спроектировать статически неопределимую систему из материала, обладающего площадкой текучести, экономичнее, чем при расчете по допускаемым, напряжениям. Это понятно: при способе расчета по допускаемым напряжениям мы считали за предельную нагрузку нашей конструкции величину QТ, при которой до предела текучести доходил лишь материал среднего стержня, крайние же были недонапряжены. При методе расчета по допускаемым нагрузкам предельная грузоподъемность определяется величиной . При нагрузке полностью используется материал всех трех стержней.

   Таким образом, новый метод расчета позволяет реализовать скрытые при старом способе запасы прочности в статически неопределимых системах, добиться повышения их расчетной грузоподъемности и действительной равнопрочности всех частей конструкции. Не представит никаких затруднений распространить этот метод на случай, когда соотношение площадей среднего и крайних стержней не будет равно единице.

   Изложенные выше теоретические соображения проверялись неоднократно на опыте, причем всегда наблюдалась достаточно близкая сходимость величин предельной нагрузки — вычисленной и определенной при эксперименте. Это дает уверенность в правильности теоретических предпосылок метода допускаемых нагрузок.


 

А также другие работы, которые могут Вас заинтересовать

50224. Відкритий валютний ринок, його характеристика та інструменти 863 KB
  Валютний ринок – це сфера економічних відносин, щодо здійснення операцій з купівлі-продажу іноземної валюти і цінних паперів в іноземній валюті з метою отримання прибутку та хеджування, а також операцій з інвестування валютного капіталу.
50225. ИЗУЧЕНИЕ ЭЛЕКТРОМАГНИТНЫХ ВОЛН В ДВУХПРОВОДНОЙ ЛИНИИ 160.5 KB
  Принципиальная схема установки или её главных узлов: Блоксхема лабораторной установки для изучения электромагнитных волн в двухпроводной линии Конструкции зондов для изучения распределения составляющих электромагнитного поля: а – петлевой зонд рамка; б – вибратор Схема установки для изучения электромагнитных волн в двухпроводной линии приведена на рис. В линии устанавливается распределение электромагнитного поля зависящее от величины нагрузочного сопротивления . Эти...
50226. Визначення довжини світлової хвилі за допомогою дифракційної гратки 170.5 KB
  При цьому кут між напрямком зору на нульовий максимум і максимум довільного порядку дорівнює куту дифракції який забезпечує умову ; . 2 З аналізу останнього співвідношення випливає що різним довжинам хвиль у максимумі одного порядку відповідають різні значення кута дифракції. Тому на...
50227. Вивчення обертання площини поляризації світла І визначення концентрації цукру в розчині 830 KB
  Обертання площини поляризації світла оптично прозорими речовинами Прилади і обладнання Цукрометр типу СУ4 набір трубок з розчинами цукру різних концентрацій соленоїд випрямляч струму типу ВС24М Теоретичні відомості та опис установки В даній лабораторній роботі для вивчення явища обертання площини поляризації світла використовується цукрометр типу СУ–4. Відлік значень кута обертання площини поляризації світла здійснюється за шкалою і ноніусом.
50228. Статистика. Предмет и методы статистики 946.26 KB
  Статистика - общественная наука, изучающая количественную сторону качественно определенных массовых социально-экономических явлений и процессов, их структуру и распределение, размещение в пространстве, движение во времени, выявляя действующие количественные зависимости, тенденции и закономерности в конкретных условиях, месте и времени.
50229. Експериментально визначити випромінювальну здатність вольфраму 158 KB
  Прилади і матеріали Оптичний пірометр із зникаючою ниткою електрична лампочка розжарення регулятор напруги ватметр блок живлення пірометра акумуляторна батарея Теоретичні відомості та опис установки Абсолютно чорні тіла є ідеалізацією реальних тіл. Дійсна температура пов’язана з яскравісною температурою Тя співвідношенням: 3 де ; =045– для вольфраму в області температур 1000–1500 0С ln045=08;...
50230. Эволюция Северной Атлантики 9.41 MB
  Прежде чем переходить непосредственно к исследованию конкретных этапов палеогеографического развития Северной Атлантики и сопряжённым с ними событиям необходимо провести чёткую демаркацию границ исследуемой территории, тем самым задав ту предметную область, рамках которой пойдёт дальнейшее повествование.
50231. ИЗУЧЕНИЕ ДИФРАКЦИИ СВЕТА ОТ ДИФРАКЦИОННОЙ РЕШЕТКИ 249.5 KB
  Явление дифракции света как и интерференции интерференция волн взаимное усиление или ослабление двух или более волн при их наложении друг на друга при одновременном распространении в пространстве связано с перераспределением энергии волн или интенсивности светового потока пропорциональной энергии волны в пространстве. Следовательно и при дифракции перераспределение интенсивности возникает вследствие интерференции множества элементарных Большое практическое значение имеет дифракция света при падении его на дифракционную решетку....
50232. Вивчення зовнішнього фотоефекту та визначення сталої Планка 253.5 KB
  Прилади і матеріали Вакуумний фотоелемент вольтметр мікроамперметр джерело регульованої постійної напруги набір світлофільтрів Теоретичні відомості та опис установки Схематично установка для дослідження зовнішнього фотоефекту наведена на рис. Визначити роботи виходу електрона з фотокатода сталу Планка та “червону†межу фотоефекту Із графіків залежності визначити значення затримуючої напруги для різних частот випромінювання. Визначити “червону†межу фотоефекту як відрізок що відтинається графіком...