22546

Прямой поперечный изгиб стержня

Лекция

Производство и промышленные технологии

Прямой поперечный изгиб стержня При прямом поперечном изгибе в сечениях стержня возникает изгибающий момент Мх и поперечная сила Qy рис. 1 которые связаны с нормальными и касательными напряжениями Рис. Связь усилий и напряжений а сосредоточенная сила б распределеннаяРис. Однако для балок с высотой сечения h l 4 рис.

Русский

2013-08-04

122 KB

5 чел.

Сопротивление материалов Сагадеев В.В.

Лекция № 20. Прямой поперечный изгиб стержня

   При прямом поперечном изгибе в сечениях стержня возникает изгибающий момент Мх и поперечная сила Qy рис. 1), которые связаны с нормальными и касательными напряжениями



Рис.1. Связь усилий и напряжений

 



а) сосредоточенная сила, б) распределенная
Рис.2. Модели прямого поперечного изгиба:

 

   Выведенная в случае чистого изгиба стержня формула для прямого поперечного изгиба, вообще говоря, неприменима, поскольку из-за сдвигов, вызываемых касательными напряжениями , происходит депланация поперечных сечении (отклонение от закона плоских сечений). Однако для балок с высотой сечения h<l/4 (рис. 2) погрешность невелика и ее применяют для определения нормальных напряжений поперечного изгиба как приближенную. При выводе условия прочности при чистом изгибе использовалась гипотеза об отсутствии поперечного взаимодействия продольных волокон. При поперечном изгибе наблюдаются отклонения от этой гипотезы:

а) в местах приложения сосредоточенных сил. Под сосредоточенной силой напряжения поперечного взаимодействия могут быть достаточно велики и во много раз превышать продольные напряжения , убывая при этом, в соответствии с принципом Сен-Венана, по мере удаления от точки приложения силы;

б) в местах приложения распределенных нагрузок. Так, в случае, приведенном на рис. 2, б, напряжения от давления на верхние волокна балки . Сравнивая их с продольными напряжениями , имеющими порядок

,

приходим к выводу, что напряжения при условии, что h2 <<l2, так как .

   Получим формулу для касательных напряжений . Примем, методика расчета нормальных напряжений известна, что касательные напряжения равномерно распределены по ширине поперечного сечения (рис. 3). Эта предпосылка выполняется тем точнее, чем уже поперечное сечение стержня. Точное решение задачи для прямоугольного поперечного сечения показывает, что отклонение от равномерного распределения , зависит от отношения сторон b/h. При (b/h) =1,0 оно составляет 12,6%, при (b/h) =0,5 — только 3,3%.



Рис.3. Расчетная модель поперечного прямого изгиба

 

   Непосредственное определение напряжений затруднительно, поэтому находим равные им (вследствие закона парности) касательные напряжения , возникающие на продольной площадке с координатой у элемента длиной dz, вырезанного из балки, (рис. 3). Сам элемент показан на рис. 4. От этого элемента продольным сечением, отстоящим от нейтрального слоя на у, отсекаем верхнюю часть, заменяя действие отброшенной нижней части касательными напряжениями (индекс гу в дальнейшем опускаем), равнодействующая которых показана на рис. 5. Здесь, согласно второй предпосылке



Рис.4. Расчетный элемент бруса

 



Рис.5. Фрагмент расчетного элемента бруса

 

по ширине элемента b. Нормальные напряжения и , действующие на торцевых площадках элемента, также заменим их равнодействующими

,

.

   Согласно первой предпосылке нормальные напряжения определяются уже известным способом, , где статический момент отсеченной части площади поперечного сечения относительно оси Ох.

Рассмотрим условие равновесия элемента (рис. 5) составив для него уравнение статики :

откуда после несложных преобразований, учитывая, что

получаем формулу для касательных напряжений при нормальном поперечном изгибе призматического стержня которая называется формулой Журавского.

 



Рис.6. Распределение касательных напряжений по контуру прямоугольного сечения

 

   В этой формуле by ширина сечения в том месте, где определяются касательные напряжения, а статический момент, подставляемый в эту формулу, может быть вычислен как для верхней, так и для нижней части (статические моменты этих частей сечения относительно его центральной оси Ох отличаются только знаком, так как статическим момент всего сечения равен нулю).

   В качестве примера применения формулы Журавского построим эпюру касательных напряжений для случая прямоугольного поперечного сечения балки (рис. 6.). Учитывая, что для этого сечения

получаем

где F=bh—площадь прямоугольника.

   Как видно из формулы, касательные напряжения по высоте сечения меняются по закону квадратичеокой параболы, достигая максимума на нейтральной оси

   Сделаем несколько замечаний, касающихся расчетов на прочность при прямом поперечном изгибе. В отличие от простых видов деформации, когда в поперечных сечениях стержня возникает лишь один силовой фактор, к которым относятся и изученные выше растяжение (сжатие) и чистый изгиб, прямой поперечный изгиб должен быть отнесен к сложным видам деформации. В поперечных сечениях стержня при поперечном изгибе возникают два силовых фактора: изгибающий момент Мх и поперечная сила Qy (рис. 7), напряженное состояние является упрощенным плоским, при котором в окрестности произвольно выбранных точек поперечного сечения действуют нормальные и касательные напряжения. Поэтому условие прочности для таких точек должно быть сформулировано на основе какого-либо уже известного критерия прочности.

   Однако учитывая, что наибольшие нормальные напряжения возникают в крайних волокнах, где касательные напряжения отсутствуют (рис. 7), а наибольшие касательные напряжения во многих случаях имеют место в нейтральном слое, где нормальные напряжения равны нулю, условия прочности в этих случаях формулируются раздельно по нормальным и касательным напряжениям



Рис.7 Распределение нормальных и касательных напряжений по контуру сечения

 



Рис.8. К сравнительной оценке модулей напряжения

 

   Покажем, что доминирующая роль в расчетах на прочность балки, подвергнутой поперечному изгибу, будет принадлежать расчету по нормальным напряжениям. Для этого оценим порядок max и max на примере консольной балки, показанной на рис. 8:

так как

Тогда

откуда max <<max, а поскольку то доминирующим в этом случае будет расчет по нормальным напряжениям и условие прочности, например, для балки из пластичного материала, работающей на прямой изгиб, как и в случае чистого изгиба будет иметь вид:

 

РАЦИОНАЛЬНЫЕ ФОРМЫ ПОПЕРЕЧНЫХ СЕЧЕНИЙ ПРИ ИЗГИБЕ

   Наиболее рациональным следует признать сечение, обладающее минимальной площадью при заданной нагрузке (изгибающем моменте) на балку. В этом случае расход материала на изготовление балки, будет минимальным. Для получения балки минимальной материалоемкости нужно стремиться к тому, чтобы по возможности наибольший объем материала работал при напряжениях, равных допускаемым или близким к ним. Прежде всего рациональное сечение балки при изгибе должно удовлетворять условию равнопрочности растянутой и сжатой зон балки. Иными словами необходимо, чтобы наибольшие напряжения растяжения (max ) н наибольшие напряжения сжатия (max ) одновременно достигали допускаемых напряжений и .

   Поэтому для балки из пластичного материала (одинаково работающего на растяжение и сжатие: ), условие равнопрочности выполняется для сечений, симметричных относительно нейтральной оси. К таким сечениям относится, например, прямоугольное сечение (рис. 9, а), при котором обеспечено условие равенства . Однако в этом случае материал, равномерно распределенный по высоте сечения, плохо используется в зоне нейтральной оси. Чтобы получить более рациональное сечение, необходимо возможно большую часть материала переместить в зоны, максимально удаленные от нейтральной оси. Таким образом, приходим к рациональному для пластичного материала сечению в форме симметричного двутавра (рис. 9, б), у которого возможно большая часть материала сосредоточена на полках (горизонтальных массивных листах), соединенных стенкой (вертикальным листом), толщина которой назначается из условий прочности стенки по касательным напряжениям, а также из соображений ее устойчивости. К двутаврому сечению близко по критерию рациональности так называемое коробчатое сечение (рис. 9, в).



Рис.9. Распределение нормальных напряжений в симметричных сечениях

 

   Рассуждая аналогично, приходим к выводу, что для балок из хрупкого материала наиболее рациональным будет сечение в форме несимметричного двутавра, удовлетворяющего условию равнопрочности на растяжение и сжатие (рис. 10):

которое вытекает из требования



Рис.10. Распределение напряжений несимметричного профиля сечения балки.

 



а) двутавр, б ) швеллер, в) неравнобокий уголок, г) равнобокий уголок
Рис.11. Используемые профили сечений:

 

   Идея рациональности поперечного сечения стержней при изгибе реализована в стандартных тонкостенных профилях, получаемых методами горячего прессования или прокатки из рядовых и легированных конструкционных высококачественных сталей, а также алюминия и алюминиевых сплавов, получивших широкое распространение в строительстве, машиностроении, авиационном машиностроении. Широко распространены показанные на рис. 11: а—двутавр, б— швеллер, в — неравнобокий уголок, г—равнобокий уголок. Реже встречаются тавр, таврошвеллер, зетовый профиль и др. Употребляются также холодногнутые замкнутые сварные профили (рис. 12).



Рис.12. Замкнутые сварные профили

 

   Поскольку по соображениям технологии сортамент стандартных профилей по размерам ограничен (например, наибольший прокатный двутавр согласно ГОСТ 8239—72 имеет высоту 550 мм), то для больших пролетов приходится применять составные (сварные или клепаные) балки.


 

А также другие работы, которые могут Вас заинтересовать

34999. Издержки производства в долгосрочном периоде. Эффекты мас 32 KB
  Хозяйственная практика показывает что на каждой ступени расширения производственных мощностей и увеличения объемов производства происходит постепенное снижение издержек производства на единицу продукции. Эта закономерность проявляющаяся слабее или сильнее практически в любом виде производства объясняется действием так называемых эффектов масштаба. Если долговременные средние издержки падают с ростом выпуска говорят что фирма имеет экономию обусловленную ростом масштабов производства.
35000. Принцип формирования и виды доходов населения 32 KB
  Признаются равно справедливыми и приемлемыми и высокие доходы тех кто преуспел в конкуренции и низкие доходы а то и отсутствие таковых тех кто потерпел неудачу. Доходы населения принято классифицировать в соответствии с разными признаками. доходы за вычетом налогов и взносов. Номинальные доходы сумма денег полученная человеком за определенный период времени.
35001. Проблема неравенства доходов. Кривая Лоренца 32 KB
  На потребительском рынке это неравенство возможностей проявляется в неравной платежеспособности покупателей в основе которой лежит неравенство доходов. Очевидно что при равном распределении доходов какими бы благими намерениями оно ни оправдывалось в обществе не будут производить предметы роскоши ибо их некому будет купить. И наоборот в обществе с неравным распределением доходов выпускаемая продукция и оказываемые услуги будут значительнее разнообразнее а структура потребления разных доходных групп будет существенно различаться.
35003. Сущность заработной платы и ее формы 22.5 KB
  Коротко можно определить зарплату как цену уплачиваемую за единицу времени услуг труда. По мере развития общества растет и та часть общественного богатства которая затрачивается на оплату труда работников в рынок труда в конечном счете определяет дифференциацию заработной платы различных категорий работников. Верхняя граница зарплаты определяется темпами роста производительности труда.
35004. Необходимость, государственного регулирования экономики 26 KB
  Государство выправляя известное несовершенство рыночной системы берет на себя организацию предложения центральных денег и в обозримом будущем без государственной помощи не обойтись. Взаимодействия участников системы свободного предпринимательства многообразны по формам и социальным последствиям. Здесь основной задачей государства является создание правовой базы и общественной атмосферы для поддержания и облегчения функционирования рыночной системы перераспределение дохода н богатства и стабилизация экономики.
35005. Экономические функции, государства 31 KB
  Государство берет на себя задачу обеспечения правовой базою и некоторых важнейших услуг являющихся предпосылкой эффективного функционирования рыночной экономики. Государство устанавливает также законные правила игры регулирующие отношения между предприятиями поставщиками ресурсов и потребителями. Основные услуги обеспечиваемые государством включают применение полицейских сил для поддержания общественного порядка введение стандартов измерения веса и качества продуктов создание денежной системы облегчающей Обмен товаров и услуг....
35006. Методы воздействия государства на экономику 29.5 KB
  Государственное регулирование это форма целенаправленного воздействия государства на функционирующую экономическую систему с целью обеспечения пли поддержания определенных процессов изменений экономических явлений или их связей. В развитых странах есть два пути сокращения государственных расходов: уменьшение расточительства государственных органов и сужение сферы деятельности государства. Другая форма денежнокредитных отношений активное участие государства в операциях на рынке ценных бумаг с целью регулирования количества обращающихся...
35007. Роль, макроэкономических показателей 33.5 KB
  В мире успешно функционирует система национальных счетов СНС приспособленная к условиям рыночной экономики. В тот период она была связана прежде всего с обслуживанием интересов органов государственного уиравления а сегодня СНС проникла во все сферы экономической и общественнополитической жизни общества. В феврале 1993 года на очередной сессии Статистической комиссии ООН в НьюЙорке была принята новая усовершенствованная СНС. В конце 1992 года Верховный Совет Российской Федерации одобрил государственную программу перехода...