22548

Напряжения и деформации при кручении стержней кругового поперечного сечения

Лекция

Производство и промышленные технологии

Напряжения и деформации при кручении стержней кругового поперечного сечения Кручением называется такой вид деформации при котором в поперечном сечении стержня возникает лишь один силовой фактор крутящий момент Мz. Крутящий момент по определению равен сумме моментов внутренних сил относительно продольной оси стержня Oz. С силами лежащими в плоскости поперечного сечения стержня интенсивности этих сил касательные напряжения и Мz связывает вытекающее из его определения уравнение равновесия статики рис. 1 Условимся считать Mz...

Русский

2013-08-04

130.5 KB

5 чел.

Сопротивление материалов Сагадеев В.В.

Лекция № 22. Напряжения и деформации при кручении стержней кругового поперечного сечения

   Кручением называется такой вид деформации, при котором в поперечном сечении стержня возникает лишь один силовой фактор — крутящий момент Мz. Крутящий момент по определению равен сумме моментов внутренних сил относительно продольной оси стержня Oz. Нормальные силы, параллельные оси Oz, вклада в крутящий момент не вносят. С силами, лежащими в плоскости поперечного сечения стержня (интенсивности этих сил — касательные напряжения и ) Мz связывает вытекающее из его определения уравнение равновесия статики (рис. 1)

   Условимся считать Mz положительным, если со стороны отброшенной части стержня видим его направленным против часовой стрелки (рис. 2). Это правило проиллюстрировано на рис. 1 и в указанном соотношении, где крутящий момент Мz принят положительным. Численно крутящий момент равен сумме моментов внешних сил, приложенных к отсеченной части стержня, относительно оси Ог.



Рис.1. Связь крутящего момента с касательными напряжениями

 



Рис.2. Иллюстрация положительного и отрицательного крутящего момента

 

   Рассмотрим кручение призматических стержней кругового поперечного сечения. Исследование деформаций упругого стержня с нанесенной на его поверхности ортогональной сеткой рисок (рис. 3) позволяет сформулировать следующие предпосылки теории кручения этого стержня:

  1.  поперечные сечения остаются плоскими (выполняется гипотеза Бернулли);
  2.  расстояния между поперечными сечениями не изменяются, следовательно ;
  3.  контуры поперечных сечений и их радиусы не деформируются. Это означает, что поперечные сечения ведут себя как жесткие круговые пластинки, поворачивающиеся при деформировании относительно оси стержня Ог. Отсюда следует, что любые деформации в плоскости пластинки равны нулю, в том числе и ;
  4.  материал стержня подчиняется закону Гука. Учитывая, что , из обобщенного закона Гука в форме получаем . Это означает, что в поперечных сечениях, стержня возникают лишь касательные напряжения , а вследствие закона парности касательных напряжений, равные им напряжения действуют и в сопряженных продольных сечениях. Следовательно напряженное состояние стержня — чистый сдвиг.



Рис.3. Иллюстрация кручения: а) исходное и б) деформированное состояния

 

   Выведем формулу для касательных напряжений при кручении призматического стержня кругового поперечного сечения. Как видно, поворот правого торцевого сечения относительно неподвижного левого на угол (назовем его углом закручивания стержня) вызывает поворот продольных волокон на угол (угол сдвига), поскольку на величину искажаются углы ортогональной сетки продольных и поперечных рисок модели.

   Двумя смежными сечениями вырежем элемент стержня длиной dz и, поскольку нас интересуют деформации элемента, левое сечение его будем считать неподвижным (рис. 5). При повороте правого сечения на угол в соответствии с гипотезой о недеформируемости радиусов, правый конец волокна АВ (отстоящий от оси элемента на величину полярного радиуса ) будет перемещаться по дуге BB1, вызывая поворот волокна на угол сдвига

   Обратим внимание на то, что в соответствии с рис. 5 и рис. 6, а сдвиг и связанное с ним касательное напряжение перпендикулярны радиусу . Определим , воспользовавшись законом Гука для чистого сдвига

(1)



Рис.5. Расчетная модель определения касательных напряжений

 



а) ортогональность и
Рис.6. Распределение касательных напряжений при кручении:

 

   Здесь — погонный угол закручивания стержня, который остается пока неизвестным. Для его нахождения обратимся к условию статики, записав его в более удобной для данного случая форме (рис. 6, a)

(2)

Подставляя (1) в (2) и учитывая, что

где Jp—; полярный момент инерции поперечного сечения (для круга с диаметром d ), получаем

(3)



Рис.7. Распределение напряжений для кольцевого сечения

 



а) разрушение дерева, б) разрушение чугуна
Рис.8. Распределение исходных касательных и главных напряжений:

 

   Подставляя выражение (3) в (1), получаем формулу для касательных напряжений при кручении призматического стержня кругового поперечного сечения

(4)

   Как видно из (4), сдвиги и касательные напряжения пропорциональны расстояний от оси стержня. Обратим внимание на структурные аналогии формул для нормальных напряжений чистого изгиба и касательных напряжений кручения.

   Мерой деформации стержня при кручении является погонный угол закручивания стержня, определяемый по (3). Поскольку величина DJp стоит в знаменателе формулы и при заданной нагрузке (Mz через нее выражается) тем меньше, чем больше DJp, последнюю называют жесткостью поперечного сечения при кручении.

Пользуясь (3) для определения угла закручивания элемента длиной dz

найдем полный угол закручивания стержня длиной l

(5)

В случае, если по длине стержня Мz и DJp постоянны, получаем

когда эти величины кусочно-постоянны, то:

(6)

Отметим, что полученные формулы по структуре аналогичны формулам для деформаций при растяжении стержня.

Наибольшие касательные напряжения возникают у внешней поверхности стержня, т. е. при

где Wр — момент сопротивления при кручении или полярный момент сопротивления

.

   Полярный момент сопротивления, стоящий в знаменателе для максимальных касательных напряжений, очевидно, является геометрической характеристикой сечения, а условие прочности стержня при кручении принимает вид

(7)

где — допускаемое напряжение на кручение.

   Как показали эксперименты и точное решение этой задачи в теории упругости, все гипотезы, сформулированные ранее для стержня со сплошным круговым сечением, остаются справедливыми и для стержня кольцевого поперечного сечения (рис. 7). Поэтому все выведенные ранее формулы пригодны для расчета стержня кольцевого сечения с той лишь разницей, что полярный момент инерции определяется как разность моментов инерции кругов с диаметрами D и d

где , а момент сопротивления определяется по формуле

   Учитывая линейный характер изменения касательных напряжений по радиусу (рис. 7) и связанное с этим лучшее использование материала, кольцевое сечение следует признать наиболее рациональным при кручении стержня. Коэффициент использования материала тем выше, чем меньше относительная толщина трубы.

   Как отмечено ранее, напряженное состояние при кручении стержня — чистый сдвиг, являющийся частным случаем плоского напряженного состояния. На площадках, совпадающих с плоскостью поперечного сечения и на парных им площадках продольных сечений возникают экстремальные касательные напряжения max-min , а главные напряжения действуют на площадках, наклоненных.коси стержня под углами ; главное напряжение .

   Особенности напряженного состояния при кручении нашли отражение в характере разрушения стержней. Так, разрушение стержня из дерева, плохо работающего на скалывание вдоль волокон, происходит от продольных трещин (рис. 8, a). Разрушение стержня из хрупкого металла (например, чугуна) происходит по винтовой линии, наклоненной к образующим под углом 45o, т. е. по траектории главного напряжения (рис. 8,б).

 

РАСЧЕТ ВАЛОВ

   Рассмотрим расчет вала на прочность и жесткость. Пусть известна мощность W (кВт), передаваемая вращающимся с заданным числом оборотов в минуту (n) валом от источника мощности (например, двигателя) к ее потребителю (например, станку), а момент т, передаваемый валом, требуется найти, так как численно равный этому моменту крутящий момент необходим для расчета вала.

   Если число оборотов вала в минуту п и соответствующая угловая скорость (с-1) постоянны, а Ф — угол поворота вала в данный момент времени t, то работа вращательного движения А=тФ. Тогда передаваемая валом мощность будет равна

Отсюда

кНм,

где учтено, что .

   Если мощность подается на вал через ведущий шкив, а раздается потребителям через несколько ведомых шкивов, то соответственно определяются моменты на шкивах, а затем строится эпюра крутящих моментов. Расчет вала на прочность и жесткость ведется, очевидно, по max Mz.

   Определение диаметра вала из условия прочности. Условие прочности при кручении вала имеет вид (7), где допускаемые напряжения принимаются пониженными по сравнению с допускаемыми напряжениями обычного статического расчета в связи с необходимостью учета наличия концентраторов напряжений (например, шпоночных канавок), переменного характера нагрузки и наличия наряду с кручением и изгиба вала.

Требуемое значение Wp=dз/16 получаем из условия (7), принимая в нем знак равенства

,

откуда получаем формулу для диаметра вала кругового сечения

(8)

   Определение диаметра вала из условия жесткости. Условие жесткости состоит в наложении ограничения на погонный угол закручивания вала , так как недостаточно жесткие валы не обеспечивают устойчивой передачи мощности и подвержены сильным колебаниям:

(9)

Тогда, учитывая, что , для диаметра вала из условия жесткости имеем

(10)

Аналогично проводятся расчеты и для вала кольцевого поперечного сечения.


 

А также другие работы, которые могут Вас заинтересовать

68591. ИМПЛИЦИТНАЯ МОДЕЛЬ ЛИЧНОСТИ ОДАРЕННОГО УЧЕНИКА У ПЕДАГОГОВ ГУМАНИТАРНЫХ И ЕСТЕСТВЕННОНАУЧНЫХ ДИСЦИПЛИН 101 KB
  В статье излагаются результаты моделирования имплицитных теорий личности ИТЛ одаренных школьников существующих в сознании педагогов. Теперь педагог является не только источником знаний но и человеком который организует и направляет образовательный процесс в рамках которого осуществляется...
68592. СТРУКТУРА И ТИПОЛОГИЯ ИНТЕЛЛЕКТУАЛЬНОЙ ИНИЦИАТИВЫ СТУДЕНТОВ 77 KB
  В статье анализируется структура и типология интеллектуальной инициативы студентов. Креативный тип интеллектуальной инициативы обусловлен на доминантном уровне общими умственными способностями на субдоминантном ценностями и смыслами самоактуализации.
68593. ФОРМИРОВАНИЕ ТЕКСТОВОЙ КОМПЕТЕНТНОСТИ СТУДЕНТОВ 63.5 KB
  В статье рассматривается понятие текстовой компетентности ее роль место и пути формирования в структуре иноязычной подготовки будущих экономистов. Подчеркивается что формирование текстовой компетентности как особого уровня владения иностранным языком возможно...
68594. СПОСОБЫ ПРОГНОЗИРОВАНИЯ ИСХОДОВ СОЦИАЛЬНОГО ВЗАИМОДЕЙСТВИЯ 36.86 KB
  Психология как наука на протяжении своего существования решает одну из важнейших прикладных задач прогнозирование реакций намерений поведения людей прогностика как научно-практическое направление изучает законы и способы прогнозирования в различных отраслях жизнедеятельности человека.
68595. ПРОФЕССИОНАЛЬНОЕ ВЫГОРАНИЕ: МИФ ИЛИ РЕАЛЬНОСТЬ 118 KB
  В работе впервые изучены особенности профессионального выгорания в повседневной деятельности связанной с экстремальными условиями ее реализации на примере работников офицерского состава министерства по чрезвычайным ситуациям МЧС. Результаты проведенного исследования позволят администрации...
68596. ИМПУЛЬСИВНОСТЬ/РЕФЛЕКТИВНОСТЬ: К ПРОБЛЕМЕ ЭФФЕКТА МОБИЛЬНОСТИ КОГНИТИВНЫХ СТИЛЕЙ СТУДЕНТОВ 73.5 KB
  Установлено что одним из факторов вызывающим эффект мобильности импульсивности рефлективности молодых людей выступает когнитивный стиль преподавателя с которым они в данный момент находятся в ситуации учебного взаимодействия. Впервые термин когнитивный стиль появился...
68598. Программирование рекурсивных алгоритмов 38.5 KB
  Если функция вызывает себя в стеке создается копия значений ее параметров как и при вызове обычной функции после чего управление передается первому исполняемому оператору функции. При завершении функции соответствующая часть стека освобождается и управление передается вызывающей функции выполнение...
68599. Исследование способов работы с функциями 60.5 KB
  В данной функции значения переменных x и y являющихся формальными параметрами меняются местами но поскольку эти переменные существуют только внутри функции chnge значения фактических...