22559

Теорема Кастильяно

Лекция

Производство и промышленные технологии

Будем решать эту задачу в несколько приемов; сначала рассмотрим более простой случай Рис. Мы представим себе что для перехода к смежному деформированному состоянию к силе сделана бесконечно малая добавка Рис. Предположим что мы сначала нагрузили нашу балку грузом ; балка очень немного прогнется Рис. Рис.

Русский

2013-08-04

133 KB

4 чел.

Сопротивление материалов Сагадеев В.В.

Лекция № 33. Теорема Кастильяно.

   Установим теперь метод определения перемещений, основанный на вычислении потенциальной энергии деформации. Поставим задачу нахождения перемещений точек упругой системы по направлению действия приложенных к этой системе внешних сил.

   Будем решать эту задачу в несколько приемов; сначала рассмотрим более простой случай (Рис.1), когда на балку в сечениях 1, 2, 3,... действуют только сосредоточенные силы , )... и т. д. Под действием этих сил балка прогнется по кривой и останется в равновесии.

   Прогибы сечений 1, 2, 3,..., в которых приложены силы , , ,..., обозначим ,, ,... и т. д. Найдем один из этих прогибов, например — прогиб сечения, в котором приложена сила .

   Переведем балку, не нарушая равновесия, из положения в смежное положение , показанное на фиг. 328 пунктиром. Это можно сделать различными приемами: добавить новую нагрузку, увеличить уже приложенные и т. д.

   Мы представим себе, что для перехода к смежному деформированному состоянию к силе сделана бесконечно малая добавка (Рис.1); чтобы при этом переходе не нарушать равновесия, будем считать, что эта добавка прикладывается статически, т. е. возрастает от нуля до окончательного значения медленно и постепенно.

 

Расчетная модель к теореме Кастильяно.

   При переходе от состояния балки к состоянию все нагрузки Р опустятся, значит, их потенциальная энергия уменьшится. Так как равновесие не нарушалось, то уменьшение, энергии нагрузок целиком преобразовалось в увеличение потенциальной энергии деформаций балки dU. Величина измеряется работой внешних сил при переходе балки из положения в положение II:

   Изменение dU потенциальной энергии деформации, являющейся функцией сил , , ,..., произошло за счет очень малого приращения одной из этих независимых переменных , поэтому дифференциал такой сложной функции равен:

Что касается величины , то эта работа в свою очередь является разностью работы нагрузок Р для положений и :

Работа при одновременном и постепенном возрастании сил Р равна:

   При вычислении работы учтем, что ее величина всецело определяется окончательной формой деформированной балки и не зависит от порядка, в котором производилась нагрузка.

   Предположим, что мы сначала нагрузили нашу балку грузом ; балка очень немного прогнется (Рис.2, положение III), и прогибы ее в точках 1, 2, 3 будут . Работа статически приложенной нагрузки будет равна . После этого начнем постепенно нагружать балку одновременно возрастающими грузами , , .



Рис.2. Расчетная модель к теореме Кастильяно.

 

   К первоначальным прогибам добавятся прогибы (Рис.2). При этой стадии нагружения силы , , произведут работу , кроме этого, произведет работу уже находившийся на балке груз ; он пройдет путь , и так как при втором этапе нагружения он оставался постоянным, то его работа равна Балка займет положение , показанное на Рис.2 пунктиром.

   Таким образом, полная работа, проделанная внешними нагрузками при переходе балки из недеформированного состояния в положение, будет равна.

Теперь вычислим

Пренебрегая слагаемым второго порядка малости, получаем:

Подставляя полученные значения dU и в исходное уравнение, находим

или

   Таким образом, в рассмотренном случае прогиб точки приложения сосредоточенной силы , равен частной производной потенциальной энергии деформации по этой силе.

   Полученный результат можно обобщить. Пусть на балку помимо сосредоточенных сил Р действуют в разных сечениях еще пары сил М (Рис.3). Мы можем повторить предыдущие рассуждения, считая, что балка переводится из положения в положение путем добавки к паре . Весь ход рассуждений остается без изменений, надо будет лишь при вычислении работы моментов , ... умножать их не на прогибы, а на углы поворота , ,... тех сечений, где эти пары приложены. Тогда dU будет равно станет , и в итоге получим:



Рис.3. Обобщенная расчетная модель к теореме Кастильяно.

 

   Так как — это перемещение, соответствующее силе , a — перемещение, соответствующее силе то полученные нами результаты можно формулировать так: производная потенциальной энергии деформации по одной из независимых внешних сил равна перемещению, соответствующему этой силе. Это и есть так называемая теорема Кастильяно, опубликованная в 1875 г.

   Заметим, что присутствие на балке сплошной нагрузки не меняет предыдущих выводов, так как всякую сплошную нагрузку можно рассматривать как состоящую из большого числа сосредоточенных сил.

   Предыдущий вывод был сделан для балки, но совершенно ясно, что его можно повторить для любой конструкции, деформации которой следуют закону Гука.

   Для случая изгиба нами была получена формула, связывающая величину потенциальной энергии U с изгибающими моментами:

Изгибающий момент является линейной функцией нагрузок , …, , ,..., q, приложенных к балке:

в этом легко убедиться, просмотрев формулы для вычисления изгибающих моментов при построении эпюр. Следовательно, потенциальная энергия является функцией второй степени от независимых внешних нагрузок.

Вычислим частную производную от U по одной из внешних сил, например . Получаем:

   Здесь мы имеем дело с так называемым дифференцированием определенного интеграла по параметру, так как М(х)— функция и и х, интегрирование производится по х, а дифференцирование по параметру . Как известно, если пределы интеграла постоянны, то следует просто дифференцировать подинтегральную функцию.

Таким образом, прогиб в точке приложения сосредоточенной силы равен:

а угол поворота сечения с парой

Напомним, что знак предела l условно показывает, что интеграл должен охватить всю балку.

 

Примеры приложения теоремы Кастильяно.

   Определим (Рис.4) прогиб свободного конца В балки, защемленной другим концом А. Балка нагружена сосредоточенной силой, приложенной в точке В. В данном случае возможно непосредственное применение теоремы Кастильяно, так как отыскивается прогиб сечения, где приложена сосредоточенная сила Р



Рис.4. Пример расчетной схемы для расчета перемещений.

 

   Начало отсчета абсциссы х сечения можно выбирать произвольно, лишь бы формула для М (х) была возможно проще. Отсчитывая х от точки В, получаем для момента в любом сечении балки

и

Подставляя эти значения в формулу для и интегрируя, чтобы охватить всю длину балки от 0 до l, получаем:


 

А также другие работы, которые могут Вас заинтересовать

12567. ТЕПЛОЕМКОСТЬ КРИСТАЛЛИЧЕСКИХ ТЕЛ 653 KB
  ОТЧЕТ по лабораторной работе №3 ТЕПЛОЕМКОСТЬ КРИСТАЛЛИЧЕСКИХ ТЕЛ ВВЕДЕНИЕ Цель работы – ознакомление с микроскопической теорией теплоемкости кристаллических тел ознакомление с установкой для измерения теплоемкости и измерение теплоемкости двух образцов. ...
12568. БАРОЭФФЕКТ ПРИ ВЗАИМНОЙ ДИФФУЗИИ ГАЗОВ 137.5 KB
  ОТЧЕТ по лабораторной работе №2М БАРОЭФФЕКТ ПРИ ВЗАИМНОЙ ДИФФУЗИИ ГАЗОВ ВВЕДЕНИЕ Целью данной лабораторной работы является ознакомление с явлением бароэффекта при взаимной диффузии газов а также приобретение знаний и навыков в работе с ...
12569. ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ГАЗОВ МЕТОДОМ НЕСТАЦИОНАРНОГО ПОТОКА 456 KB
  ОТЧЕТ по лабораторной работе №1М ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ГАЗОВ МЕТОДОМ НЕСТАЦИОНАРНОГО ПОТОКА ВВЕДЕНИЕ Целью данной лабораторной работы является ознакомление с существующими методами измерения коэффициентов динамической вязкости газов на примере ...
12570. СОПРОТИВЛЕНИЕ ОБТЕКАЕМЫХ ТЕЛ. ЛАБОРАТОРНАЯ РАБОТА 243 KB
  ОТЧЕТ по лабораторной работе №6м СОПРОТИВЛЕНИЕ ОБТЕКАЕМЫХ ТЕЛ Введение Целью данной лабораторной работы является ознакомление с существующими методами измерения расхода скорости газа и силы с которой газ действует на oбтекаемое тело в дозвуковой аэродина...
12571. Исследование статических и динамических характеристик полупроводниковых диодов и транзисторов 274 KB
  Лабораторная работа №1 Исследование статических и динамических характеристик полупроводниковых диодов и транзисторов Цель работы: Цель работы: исследование вольтамперных и динамических характеристик работы полупроводниковых диодов и транзисторов а также общи...
12573. Измерение скорости роста кристалла, растущего из водного раствора 154.46 KB
  ОТЧЕТ по лабораторной работе №7т Измерение скорости роста кристалла растущего из водного раствора Введение Кристаллы встречаются повсюду. Широко применение кристаллов в технике где используются те или иные их свойства. В промышленности применяют также искусс...
12574. ОПРЕДЕЛЕНИЕ КРИТИЧЕСКИХ ПАРАМЕТРОВ ДВУОКИСИ УГЛЕРОДА 342 KB
  ОПРЕДЕЛЕНИЕ КРИТИЧЕСКИХ ПАРАМЕТРОВ ДВУОКИСИ УГЛЕРОДА Отчет по лабораторной работе № 1Т ВВЕДЕНИЕ Исследование критического состояния вещества необходимо не только с прикладной точки зрения но имеет и большое теоретическое значение. Особенности поведения вещества...
12575. Измерение коэффициента гидравлического сопротивления при течении воздуха в цилиндрической трубке 228.5 KB
  ОТЧЕТ по лабораторной работе № 4м измерение коэффициента гидравлического сопротивления при течении воздуха в цилиндрической трубке введение Целью данной лабораторной работы является ознакомление с основными положениями теории подобия применительно к механик...