22560

Теоремы о взаимности работ и Максвелла — Мора

Лекция

Производство и промышленные технологии

Если к балке нагруженной силой приложить затем статически силу в сечении 2 то к прогибу точки приложения силы от этой же силы прибавится Рис.1 прогиб от силы равный ; первый значок у буквы у указывает точку для которой вычисляется прогиб; второй обозначает силу вызывающую этот прогиб. Расчетная схема к теореме о взаимности работ Полная работа внешних сил составится из трех частей: работы силы на вызванном ею прогибе т. работы силы на вызванном ею прогибе ее точки приложения т.

Русский

2013-08-04

150 KB

3 чел.

Сопротивление материалов Сагадеев В.В.

Лекция № 34. Теоремы о взаимности работ и Максвелла — Мора.

   Пользуясь понятием о потенциальной энергии, можно установить следующую зависимость между деформациями в различных сечениях балки.

   Если к балке, нагруженной силой приложить затем статически силу в сечении 2, то к прогибу точки приложения силы от этой же силы прибавится (Рис.1) прогиб от силы , равный ; первый значок у буквы у указывает точку, для которой вычисляется прогиб; второй — обозначает силу, вызывающую этот прогиб.



Рис.1. Расчетная схема к теореме о взаимности работ

 

   Полная работа внешних сил составится из трех частей: работы силы на вызванном ею прогибе , т. е. , работы силы на вызванном ею прогибе ее точки приложения , т. е. , наконец, работы силы на прогибе ее точки приложения от силы , т. е. .

Таким образом, накопленная в стержне при действии обеих сил энергия будет равна:

   Это количество энергии деформации зависит лишь от конечных значений сил и прогибов и не зависит от порядка нагружения.

   Если к балке, загруженной силой , приложить затем силу то, повторив цепь вычислений, получим:

Сравнивая оба значения U, получаем:

т. е. работа силы (или первой группы сил) на перемещениях, вызванных силой (второй группой сил), равна работе силы на перемещениях, вызванных силой .

   Это и есть теорема о взаимности работ. Ее можно сформулировать и иначе: работа первой силы () при действии второй () равна работе второй силы при действии первой.

 

Теорема Максвелла—Мора.

Прогиб балки в точке приложения сосредоточенной силы Р равен:

аналогичное выражение мы имеем и для угла поворота с заменой производной на . Выясним, что представляют собой эти производные.

   Если на балке расположена какая угодно нагрузка из сосредоточенных сил , , ,..., моментов , ,..., сплошных нагрузок ,..... то момент М(х) в любом сечении такой балки выражается линейной функцией от нагрузок:



Рис.2. Частная расчетная модель метода Максвелла — Мора.

 

   Коэффициенты , ,..., , …, , ... являются функциями пролета балки, расстояний точек приложения сил и моментов от опор и абсциссы х взятого сечения. Пусть мы отыскиваем прогиб точки приложения силы ; тогда

так как , ,..., , ,..., ,..., , ,..., , …, , ... при этом дифференцировании постоянны. Но можно рассматривать как численную величину момента М в любом сечении балки от действия так называемой единичной нагрузки, т. е. силы ; действительно, подставляя в формулу вместо его частное значение, единицу, и приравнивая все остальные нагрузки нулю, получаем .

Например, для балки, изображенной на Рис2, а, изгибающий момент равен:

   Производная ; но это как раз и будет выражение изгибающего момента нашей балки, если мы ее нагрузим силой 1, приложенной в той же точке В, где расположена сила Р (Рис.2, б), и направленной в ту же сторону.

   Аналогично, производная изгибающего момента М (х) по паре сил численно представляет собой изгибающий момент от пары с моментом, равным единице, приложенной в том же сечении, где имеется пара , и направленной в ту же сторону. Таким образом, вычисление производных изгибающего момента можно заменить вычислением изгибающих моментов от единичной нагрузки. Эти моменты мы будем обозначать буквой .

   Таким образом, для отыскания перемещения (прогиба или угла поворота) любого сечения балки, вне зависимости от того, приложена или не приложена в этом сечении соответствующая сила, необходимо найти выражение для изгибающего момента М от заданной нагрузки и момента от соответствующей единичной нагрузки, приложенной в сечении, где ищем перемещение ; тогда это перемещение выразится формулой

   Эта формула была предложена Максвеллом в 1864 г. и введена в практику расчета О. Мором в 1874 г. Если мы в полученном выражении под подразумеваем прогиб, то момент надо вычислять от сосредоточенной единичной силы, приложенной в той точке, где мы отыскиваем прогиб; при вычислении же угла поворота в качестве единичной нагрузки прикладывается пара сил с моментом, равным единице.

Для примера рис.2 имеем:

(рис.2,а)

(рис.2, б)

   Знак плюс означает, что направление перемещения совпадает с направлением единичной нагрузки, знак минус — наоборот.

   Если при определении изгибающих моментов придется делить балку на участки, то соответственно и интеграл в формуле распадется на сумму интегралов.

   Сравнивая формулу Кастильяно с формулой Мора, нетрудно заметить, что они отличаются лишь одним множителем. В теореме Кастильяно или , в теореме Мора .

   Следовательно, производная от изгибающего момента по обобщенной силе — это то же самое, что изгибающий момент от силы .

 

Метод Верещагина.

   Способ Максвелла — Мора в значительной степени вытеснил на практике непосредственное применение теоремы Кастильяно. В справочниках обычно приводятся таблицы интегралов для наиболее часто встречающихся типов нагрузки.

   Наш соотечественник А. Н. Верещагин в 1924 г. предложил упрощение вычислений. Так как единичной нагрузкой бывает обычно либо сосредоточенная сила, либо пара сил, то эпюра оказывается ограниченной прямыми линиями. Тогда вычисление при любом очертании эпюры М можно произвести следующим образом. Пусть эпюра М (Рис.3) имеет криволинейное очертание, а эпюра — прямолинейное. Произведение Mdx можно рассматривать, как элемент площади эпюры М, заштрихованный на чертеже.

   Так как ордината равна , то произведение , а весь интеграл представляет собой статический момент площади эпюры М относительно точки А, умноженный на .



Рис.3. Расчетная модель метода Верещагина.

 

   Но этот статический момент равен всей площади эпюры М, умноженной на расстояние от ее центра тяжести до точки А. Таким образом,

но величина равна ординате эпюры под центром тяжести эпюры М. Отсюда

и искомое перемещение равно

   Таким образом, для определения перемещения надо вычислить — площадь эпюры М, умножить ее на ординату эпюры от единичной нагрузки под центром тяжести площади и разделить на жесткость балки.

   Определим этим способом угол поворота сечения D балки, изображенной на Рис.4, а; Балка загружена моментом М, приложенным в сечении В к консоли АВ. Эпюра М показана на Рис.4, б. Прикладываем в сечении D единичную пару, выбирая ее направление произвольно (Рис.4, в). Эпюра моментов от единичной нагрузки показана на рис.4, г. Так как М на участках DC и СВ равен нулю, то остается лишь один интеграл для участка АВ.



а) расчетная схема б)грузовая эпюра в)фиктивное состояние г) эпюра моментов от единичного момента

Рис.4. Иллюстрация метода Верещагина:

 

   Площадь равна ; ордината эпюры под центром тяжести площади равна отсюда искомый угол поворота равен

Знак плюс показывает, что вращение происходит по направлению единичной пары, т. е. по часовой стрелке.


 

А также другие работы, которые могут Вас заинтересовать

34699. Административно-плановая (командная) экономическая система 23.83 KB
  Административноплановая командная экономическая система существовала в СССР. Это объяснялось тем что в городах практически отсутствовало жилье для вновь прибывших и тем что в соответствии с законом СССР было очень сложно получить постоянную прописку в данном городе. Высшим плановым органом являлся Госплан СССР. Госплан СССР определял плановые задания республиканским и местным плановым органам а также плановым отделам министерств и ведомств которые давали плановые задания государственным предприятиям то есть указывали им...
34700. Монополия. Монопольная власть. Условия максимизации прибыли при монополии. Ценовая дискриминация 17.8 KB
  Монополия. Монополия тип рыночной системы в котором существует только один продавец контролирующий всю отрасль производства определенного товара не имеющего близкого заменителя. Закрытая монополия. Естественная монополия отрасль в которой долгосрочные средние издержки минимальны только тогда когда одна фирма обслуживает весь рынок целиком.
34701. Экономическая рента 16.61 KB
  Рассмотрим понятие экономической ренты на примере рынка труда где экономическая рента равна разности между фактической ценой труда и тем ее уровнем который достаточно для того чтобы привлечь работника трудиться по данной профессии рисунок1 Ставка зарплаты в час W1 Е S А D L1 Колво чел.L 0 1 2 3 4 5 Допустим что...
34702. Коммерческие банки. Центральный банк 17.35 KB
  Поэтому все частные банки называют коммерческими банками в отличие от Центрального банка. Операции любого банка подразделяются на пассивные и активные. Создание коммерческого банка начинается с того что его владелец акционерное общество должен инвестировать сложить собственные деньги в кассу банка деньги в строительство здания в оборудование сейфы и др. Чем выше процентная ставка по вкладу тем больше вкладчиков у банка.
34703. Бухгалтерские издержки и прибыль 20.08 KB
  Бухгалтерские издержки и прибыль. Экономические издержки и прибыль. Издержки производства поразному определяются бухгалтером и экономистом. Бухгалтер определяет издержки чтобы установить во что обошлось фирме производство продукции.
34704. Рынок и его функции. Виды рынков. Рыночная экономическая система 22.68 KB
  Рынок и его функции. Для домашней хозяйки рынок это городской базар или магазин. Поэтому рынок это форма контактов между продавцами и покупателями товаров и услуг недвижимости ценных бумаг и валюты. Таким образом рынок выполняет информационную функцию то есть через постоянно меняющиеся цены рынок сообщает производителям где и какой продукции не хватает где и какая продукция произведена с избытком.
34705. Смешанная экономическая система 16.52 KB
  СМЕШАННАЯ ЭКОНОМИКА это рыночная система основанная на частной собственности и свободном предпринимательстве регулируемая государством. В смешанной экономике активную роль играет государство. Государство вырабатывает правила игры создает законы которые должны обеспечить всем участникам хозяйственной деятельности равные права: государство ведет борьбу с недобросовестной конкуренцией контролирует деятельность фирм с целью недопущения незаконных финансовых операций и нарушения прав потребителей защищает от злоупотребления крупными...
34706. Монополистическая конкуренция. Определение объема продукции в условиях монополистической конкуренции 15.72 KB
  Монополистическая конкуренция это тип рыночной структуры рынка состоящий из множества мелких фирм выпускающих дифференцированную продукцию и характеризующийся свободным входом на рынок и выходом с рынка. Сходства монополистической конкуренции с совершенной конкуренцией: большое число продавцов свободный вход на рынок и выход с рынка. Итак рынок с монополистической конкуренцией характеризуется следующими особенностями: наличие множества продавцов и покупателей отсутствие барьеров удерживающих новые фирмы от вступления на рынок...
34707. Олигополия. Ценовые войны. Картель 16.85 KB
  ; олигополистические фирмы взаимозависимы поэтому при формировании ценовой политики должны принимать во внимание реакцию конкурентов то есть контроль над ценами у олигополистических фирм ограничен. Только фирмы обладающие большими долями в общем объеме продаж могут влиять на цену товара. Фирмы соперники а трофеем является прибыль. Олигополистические фирмы по истечению некоторого времени вступают между собой в сотрудничество чтобы в будущем избежать понижения прибыли.