22560

Теоремы о взаимности работ и Максвелла — Мора

Лекция

Производство и промышленные технологии

Если к балке нагруженной силой приложить затем статически силу в сечении 2 то к прогибу точки приложения силы от этой же силы прибавится Рис.1 прогиб от силы равный ; первый значок у буквы у указывает точку для которой вычисляется прогиб; второй обозначает силу вызывающую этот прогиб. Расчетная схема к теореме о взаимности работ Полная работа внешних сил составится из трех частей: работы силы на вызванном ею прогибе т. работы силы на вызванном ею прогибе ее точки приложения т.

Русский

2013-08-04

150 KB

3 чел.

Сопротивление материалов Сагадеев В.В.

Лекция № 34. Теоремы о взаимности работ и Максвелла — Мора.

   Пользуясь понятием о потенциальной энергии, можно установить следующую зависимость между деформациями в различных сечениях балки.

   Если к балке, нагруженной силой приложить затем статически силу в сечении 2, то к прогибу точки приложения силы от этой же силы прибавится (Рис.1) прогиб от силы , равный ; первый значок у буквы у указывает точку, для которой вычисляется прогиб; второй — обозначает силу, вызывающую этот прогиб.



Рис.1. Расчетная схема к теореме о взаимности работ

 

   Полная работа внешних сил составится из трех частей: работы силы на вызванном ею прогибе , т. е. , работы силы на вызванном ею прогибе ее точки приложения , т. е. , наконец, работы силы на прогибе ее точки приложения от силы , т. е. .

Таким образом, накопленная в стержне при действии обеих сил энергия будет равна:

   Это количество энергии деформации зависит лишь от конечных значений сил и прогибов и не зависит от порядка нагружения.

   Если к балке, загруженной силой , приложить затем силу то, повторив цепь вычислений, получим:

Сравнивая оба значения U, получаем:

т. е. работа силы (или первой группы сил) на перемещениях, вызванных силой (второй группой сил), равна работе силы на перемещениях, вызванных силой .

   Это и есть теорема о взаимности работ. Ее можно сформулировать и иначе: работа первой силы () при действии второй () равна работе второй силы при действии первой.

 

Теорема Максвелла—Мора.

Прогиб балки в точке приложения сосредоточенной силы Р равен:

аналогичное выражение мы имеем и для угла поворота с заменой производной на . Выясним, что представляют собой эти производные.

   Если на балке расположена какая угодно нагрузка из сосредоточенных сил , , ,..., моментов , ,..., сплошных нагрузок ,..... то момент М(х) в любом сечении такой балки выражается линейной функцией от нагрузок:



Рис.2. Частная расчетная модель метода Максвелла — Мора.

 

   Коэффициенты , ,..., , …, , ... являются функциями пролета балки, расстояний точек приложения сил и моментов от опор и абсциссы х взятого сечения. Пусть мы отыскиваем прогиб точки приложения силы ; тогда

так как , ,..., , ,..., ,..., , ,..., , …, , ... при этом дифференцировании постоянны. Но можно рассматривать как численную величину момента М в любом сечении балки от действия так называемой единичной нагрузки, т. е. силы ; действительно, подставляя в формулу вместо его частное значение, единицу, и приравнивая все остальные нагрузки нулю, получаем .

Например, для балки, изображенной на Рис2, а, изгибающий момент равен:

   Производная ; но это как раз и будет выражение изгибающего момента нашей балки, если мы ее нагрузим силой 1, приложенной в той же точке В, где расположена сила Р (Рис.2, б), и направленной в ту же сторону.

   Аналогично, производная изгибающего момента М (х) по паре сил численно представляет собой изгибающий момент от пары с моментом, равным единице, приложенной в том же сечении, где имеется пара , и направленной в ту же сторону. Таким образом, вычисление производных изгибающего момента можно заменить вычислением изгибающих моментов от единичной нагрузки. Эти моменты мы будем обозначать буквой .

   Таким образом, для отыскания перемещения (прогиба или угла поворота) любого сечения балки, вне зависимости от того, приложена или не приложена в этом сечении соответствующая сила, необходимо найти выражение для изгибающего момента М от заданной нагрузки и момента от соответствующей единичной нагрузки, приложенной в сечении, где ищем перемещение ; тогда это перемещение выразится формулой

   Эта формула была предложена Максвеллом в 1864 г. и введена в практику расчета О. Мором в 1874 г. Если мы в полученном выражении под подразумеваем прогиб, то момент надо вычислять от сосредоточенной единичной силы, приложенной в той точке, где мы отыскиваем прогиб; при вычислении же угла поворота в качестве единичной нагрузки прикладывается пара сил с моментом, равным единице.

Для примера рис.2 имеем:

(рис.2,а)

(рис.2, б)

   Знак плюс означает, что направление перемещения совпадает с направлением единичной нагрузки, знак минус — наоборот.

   Если при определении изгибающих моментов придется делить балку на участки, то соответственно и интеграл в формуле распадется на сумму интегралов.

   Сравнивая формулу Кастильяно с формулой Мора, нетрудно заметить, что они отличаются лишь одним множителем. В теореме Кастильяно или , в теореме Мора .

   Следовательно, производная от изгибающего момента по обобщенной силе — это то же самое, что изгибающий момент от силы .

 

Метод Верещагина.

   Способ Максвелла — Мора в значительной степени вытеснил на практике непосредственное применение теоремы Кастильяно. В справочниках обычно приводятся таблицы интегралов для наиболее часто встречающихся типов нагрузки.

   Наш соотечественник А. Н. Верещагин в 1924 г. предложил упрощение вычислений. Так как единичной нагрузкой бывает обычно либо сосредоточенная сила, либо пара сил, то эпюра оказывается ограниченной прямыми линиями. Тогда вычисление при любом очертании эпюры М можно произвести следующим образом. Пусть эпюра М (Рис.3) имеет криволинейное очертание, а эпюра — прямолинейное. Произведение Mdx можно рассматривать, как элемент площади эпюры М, заштрихованный на чертеже.

   Так как ордината равна , то произведение , а весь интеграл представляет собой статический момент площади эпюры М относительно точки А, умноженный на .



Рис.3. Расчетная модель метода Верещагина.

 

   Но этот статический момент равен всей площади эпюры М, умноженной на расстояние от ее центра тяжести до точки А. Таким образом,

но величина равна ординате эпюры под центром тяжести эпюры М. Отсюда

и искомое перемещение равно

   Таким образом, для определения перемещения надо вычислить — площадь эпюры М, умножить ее на ординату эпюры от единичной нагрузки под центром тяжести площади и разделить на жесткость балки.

   Определим этим способом угол поворота сечения D балки, изображенной на Рис.4, а; Балка загружена моментом М, приложенным в сечении В к консоли АВ. Эпюра М показана на Рис.4, б. Прикладываем в сечении D единичную пару, выбирая ее направление произвольно (Рис.4, в). Эпюра моментов от единичной нагрузки показана на рис.4, г. Так как М на участках DC и СВ равен нулю, то остается лишь один интеграл для участка АВ.



а) расчетная схема б)грузовая эпюра в)фиктивное состояние г) эпюра моментов от единичного момента

Рис.4. Иллюстрация метода Верещагина:

 

   Площадь равна ; ордината эпюры под центром тяжести площади равна отсюда искомый угол поворота равен

Знак плюс показывает, что вращение происходит по направлению единичной пары, т. е. по часовой стрелке.


 

А также другие работы, которые могут Вас заинтересовать

59068. Побудова симетричних малюнків у графічному редакторі 28.5 KB
  Подолання вершини Снігова лавина 7 балів. Вчитель говорить: Дорогий альпіністе Якщо ти набрав більше 9 балів ти зійшов на вершину. Молодець Якщо набрав 9 балів подолав другу вершину. Якщо у тебе 7 балів ти зійшов на першу вершину.
59069. Повість Ясунарі Кавабата. Тисяча журавлів 63.5 KB
  Особливо виразно це виявилося у творах Ясунарі Кавабата 18991972. Недарма древня столиця Японії Кіото незмінно знаходиться у центрі художньої оповіді Ясунарі Кавабата. Ясунарі Кавабата один із визначних прозаїків XX століття якому в 1968 році була вручена Нобелівська премія за письменницьке мистецтво...
59070. Вистава на чотири дії. Повернуте право 42.5 KB
  З іншого боку шкутильгає хвора книга Українська мова. Українська мова. Привіт ровеснице Українська мова.
59071. Повторення вивченого про спілкування і мовлення. Ситуація спілкування та її складові 30.5 KB
  Мета: поновити в памяті учнів те що відомо їм про відмінності між мовленням та види мовленнєвої діяльності про мовленнєву ситуацію; розвивати в учнів логіку мислення звязне мовлення; виконувати правила етикету.
59072. Повторення вивченого про текст. Види звязку речень у тексті (практично). Складний план готового тексту 32.5 KB
  Мета: поновити в памяті учнів відоме про мовлення його форми і текст; ознайомити учнів із видами звязку речень у тексті вчити учнів складати складний план розвивати логічне мислення мовлення виховувати любов до рідного слова.
59073. Повторення вивченого про типи і стилі мовлення 31 KB
  Про що в тексті розповідається Що в ньому описується Щодо чого наводиться в тексті роздум Чому складено оцінку Назвати відомі вам типи мовлення. Який тип мовлення є у тексті основним а який допоміжним.
59074. Виховний захід у молодшій школі. Поговоримо про культуру... 64.5 KB
  Слово культура має низку значень а одне з них освіченість вихованість звідси культурний той хто освічений та вихований Культурна людина зайшовши до школи обовязково усміхнеться та привітається з охоронцями з технічками а не вдаватиме що окрім неї у вестибулі нікого немає.
59075. Погода рідного краю. Природознавство 4-й клас 46.5 KB
  Мета: познайомити учнів зі складом атмосфери планети Земля, утворенням хмар, вітру, збагатити уявлення про опади, дати поняття про погоду, указати на значення прогнозу погоди для людини, розвивати спостережливість, уяву, логічне мислення, узагальнювати знання про явища природи...
59076. Урок-телерепортаж із природознавства у 4-му класі. Подорож бутерброда 49 KB
  Обладнання: додатковий теоретичний матеріал таблицямозаїка Органи травлення модель бутерброда картки моніторингу Дерево підсумків. Сьогодні ми познайомимося з органами травлення. Що ж таке травлення Що ви уявляєте коли вимовляєте це слово Які асоціації воно викликає у вас...