22628

Явище Доплера в оптиці і в акустиці

Доклад

Физика

Акустичні хвилі розповсюджуються в середовищі газі всередині якого можуть рухатись джерело і приймаючий пристрійтак що потрібно розглядати не тільки їх рух відносно одинодного а й по відношенню до середовища. Швидкість хвилі в середовищі С=const не залежить від руху джерела. Отже хвилі що вийшли за час τ=t2t1 дійдуть до пристрію протягом часу Θ=Θ2Θ1=τ1V с. Вона рівна: у випадку віддалення від джерела у випадку наближення до джерела Так як швидкість хвилі в середовищі визначається властивостями хвилі тобто не залежить від руху...

Украинкский

2013-08-04

50.5 KB

0 чел.

37. Явище Доплера в оптиці і в акустиці.

Явище доплера- залежність частоти джерела від зміни відстані між джерелом та приймаючим пристроєм. Частота стає більшою при наближенні джерела до приймаючого пристроя , та стає меншою при віддаленні від нього.

                         Акустика.

Акустичні хвилі розповсюджуються в середовищі (газі), всередині якого можуть рухатись джерело і приймаючий пристрій,так що потрібно розглядати не тільки їх рух відносно один-одного, а й по відношенню до середовища.

Розглянемо випадки:

а) рух джерела;

б) рух приймача.

а) Джерело рухається відносно середовища зі швидкістю v. Швидкість хвилі в середовищі С=const, не залежить від руху джерела.

Нехай приймач знах. в точці В, джерело (S1) рух. Зі швидкістю V вздовж S1 В. Хвиля,

яка вийшла в момент часу t1 , коли джерело знаходилось на відстані S1B = a, від приймача, дойде до останнього к моменту: Θ1 = t1+a/c, хвиля що вийшла в момент t2=t1+τ, дойде до приймача в момент Θ2=t2+(а± Vτ)/c; оскільки відстань між джерелом і приймачем буде (а+) або (а- Vτ) в залежності від напрямку руху. Отже хвилі що вийшли за час τ=t2-t1, дійдуть до пристрію протягом часу Θ=Θ21=τ(1±V/с). Якщо ν0-частота джерела, то за час τ їм буде випущено N=ν0τ хвиль та частота, що приймається пристроєм є ν=N/Θ. Вона рівна:

- у випадку віддалення від джерела

- у випадку наближення до джерела

Так як швидкість хвилі в середовищі визначається властивостями хвилі, тобто не залежить від руху джерела і залишається рівною с, то обов`язково повинна бути зміна довжини хвилі. Якщо λ0-довжина хвилі, коли джерело не рухається, λ-довжина хвилі, коли джерело рухається, тоді:

. Отже при русі джерела в середовищі швидкість хвилі відносно пристрою,який знаходиться в цьому середовищі, залишається постійною, а частота і довжина хвилі змінюються.

б) Приймач рухається відносно середовища із швидкістю V , швидкість хвилі в середовищі = с. Аналогічно отримано Θ1 = t1+a/(c± V) , Θ2=t2+(а± Vτ)/(c± V), тому що зближення між хвилею і пристроєм відбувається із швидкістю (c±V) (швидкість хвилі відносно пристрою). Отже: Θ= τ(1±V/(c±V)), тоді частота, що приймається пристроєм, буде рівна:

- у випадку віддалення пристроя

-у випадку наближення

При русі приймача швидкість хвилі відносно нього складається з швидкості хвилі відносно середовища і швидкості пристрою відносно середовища, тобто рівна: (c±V)=с(1± V). Довжина хвилі, що приймається пристроєм не змінюється. Дійсно: Отже , у випадку руху приймача частота та швидкість хвилі відносно пристрою змінюється але довжина хвилі залишається незмінною.

Якщо враховувати, що напрямок спостереження складає кут φ з напрямком руху, тоді: -у випадку руху джерела

- у випадку руху приймача

Отже у випадку руху в середовищі ми маємо 2- ф-ли., які відрізняються на множник - 2-й порядок малості відносно V.(інколи може бути суттєвим).

Отже, якщо приймач рухається відносно середовища з швидкістю V , а джерело – u, тоді при u= V- явище Доплера немає місця. Якщо , то явищє Доплера відбувається, причому зміна частоти залежить не від різниці u-V, а від самих величин u і V. Тому в даному випадку це явище дозволяє визначити не тільки швидкість джерела відносно пристроя, но і швидкість джерела і пристрою відносно середовища.

                                    Оптика

Світові хвилі можуть розповсюджуватись в просторі, який нічим не заповнений (вакуум). Дослід Майкельсона довів, що в оптиці розповсюдження світових хвиль в нерухомому ефірі не має місця. Тобто всі процеси проходять таким чином, що є лише відносний рух приймача і джерела по відношенню один до одного, а поняття абсолютного руху(рух відносно середовища) не має змісту (принцип відносності). Отже ми будемо мати одну загальну формулу для явища Доплера, інакше ми б суперечили принципу відносності.

Для обох випадків, які ми розглядали в акустиці будемо мати:

Завдяки явищу Доплера були відкриті подвійні зірки, в астрофізиці оцінюють швидкість виверження водневих мас. Було констатовано зміщення водневих смуг в спектрах таких зірок, як Вега та Сиріус.


 

А также другие работы, которые могут Вас заинтересовать

29027. Сплошные фундаменты. Основные конструктивные решения. Сопряжение колонн со сплошными фундаментами 31 KB
  Сплошные фундаменты. Сплошные фундаменты иногда называемые плитными устраивают под всем зданием в виде железобетонных плит под стены или сетку колонн рис. Сплошные фундаменты способствуют уменьшению неравномерности осадки сооружения. Сплошные фундаменты выполняются как правило из монолитного железобетона.
29028. Определение глубины заложения фундамента исходя из инженерно-геологических и гидрогеологических условий строительной площадки 31.5 KB
  Этот выбор производится на основе предварительной оценки прочности и сжимаемости грунтов по геологическим разрезам. Покажем это на примере рассмотрев 3 наиболее характерные схемы напластований грунтов приведенные на рис. Площадка сложена одним или несколькими слоями прочных грунтов при этом строительные свойства каждого последующего слоя не хуже свойств предыдущего. В этом случае глубина заложения фундамента принимается минимальной допускаемой при учёте сезонного промерзания грунтов и конструктивных особенностей сооружения рис.
29029. Учёт глубины сезонного промерзания грунтов при выборе глубины заложения фундаментов зданий и сооружений 20.5 KB
  Учёт глубины сезонного промерзания грунтов при выборе глубины заложения фундаментов зданий и сооружений. Глубина заложения фундамента из условия промерзания грунтов назначается в зависимости от их вида состояния начальной влажности и уровня подземных вод в период промерзания. Как непучинистые рассматриваются также пески мелкие и пылеватые с любой влажностью а также супеси твёрдой консистенции если уровень подземных вод во время промерзания находится от спланированной отметки земли на глубине равной расчётной глубине промерзания плюс 2 м...
29030. Определение глубины заложения фундаментов с учётом конструктивных особенностей сооружения, включая глубину прокладки подземных коммуникаций, наличие и глубину заложения соседних фундаментов 31.5 KB
  Определение глубины заложения фундаментов с учётом конструктивных особенностей сооружения включая глубину прокладки подземных коммуникаций наличие и глубину заложения соседних фундаментов. Основными конструктивными особенностями возводимого сооружения влияющими на глубину заложения его фундамента являются: наличие и размеры подвальных помещений приямков или фундаментов под оборудование; глубина заложения фундаментов примыкающих сооружений; наличие и глубина прокладки подземных коммуникаций. В зданиях с подвалом или полуподвалом а также...
29031. Определение размеров подошвы центрально нагруженных фундаментов мелкого заложения 63.5 KB
  Реактивное давление грунта по подошве жёсткого центрально нагруженного фундамента принимается равномерно распределённым интенсивностью: 1 где NoII расчётная вертикальная нагрузка на уровне обреза фундамента; GfII и GgII расчётные значения веса фундамента и грунта на его уступах см.1; А площадь подошвы фундамента. Площадь подошвы фундамента при его расчёте по второму предельному состоянию по деформациям определяется из условия: pII ≤ R 2 где R расчётное сопротивление грунта основания. Поскольку обе части неравенства 2...
29032. Определение размеров подошвы внецентренно нагруженных фундаментов мелкого заложения. Эпюры давлений под подошвой фундамента. Порядок расчёта 33 KB
  Эпюры давлений под подошвой фундамента. При расчёте давление по подошве внецентренно нагруженного фундамента принимают изменяющимся по линейному закону а его краевые значения при действии момента сил относительно одной из главных осей определяют как для случая внецентренного сжатия по формуле: 1 Подстановкой значений А=l·b W=b2l 6 и M=NII·e формула 1 приводится к виду 2 2 где NII суммарная вертикальная нагрузка на основание включая вес фундамента и грунта на его уступах; A площадь подошвы фундамента; е эксцентриситет...
29033. Гидроизоляция фундаментов. Защита подвальных помещений от сырости и подтопления подземными водами 42 KB
  Гидроизоляция фундаментов. Гидроизоляция предназначается для обеспечения водонепроницаемости сооружений антифильтрационная гидроизоляция а также защиты от коррозии и разрушения материалов фундаментов и подземных конструкций от агрессивных подземных вод антикоррозионная гидроизоляция. Гидроизоляция от сырости и грунтовых вод подвальных и заглубленных помещений является значительно более сложной выбор такой гидроизоляции зависит от гидрогеологических условий строительной площадки уровня подземных вод их агрессивности особенностей...
29034. Расчёт фундаментов по второй группе предельных состояний. Определение конечной осадки фундаментов мелкого заложения методом послойного суммирования 34 KB
  Расчёт оснований фундаментов по второй группе предельных состояний по деформациям производится исходя из условия: s ≤ su 1 где s конечная стабилизированная осадка фундамента определённая расчётом; su предельное значение осадки устанавливаемое соответствующими нормативными документами или требованиями проекта. После определения размеров подошвы фундамента и проверки условия pII ≤ R где рII среднее давление на основание по подошве фундамента a R расчётное сопротивление грунта ось фундамента совмещают с литологической колонкой...
29035. Расчёт фундаментов по второй группе предельных состояний. Определение конечной осадки фундаментов мелкого заложения методом эквивалентного слоя 31.5 KB
  Расчёт фундаментов по второй группе предельных состояний по деформациям заключается в выполнении условия s ≤ sw 1 где s конечная стабилизированная осадка фундамента определённая расчётом; sw предельное значение осадки устанавливаемое соответствующими нормативными документами или требованиями проекта. Конечная стабилизированная осадка фундамента может быть определена методом эквивалентного слоя. Осадка с учётом жёсткости и формы подошвы фундамента в случае однородного основания определяется по формуле: s=p0hэmv 2 где p0 ...