22826

Релаксаційні коливання у схемі з неоновою лампою

Лабораторная работа

Физика

Якщо напруга досягне певної величини яка називається напругою запалювання U3 лампа спалахне і струм стрибком досягне скінченої величини I3. Коли напруга спаде до величини U3 лампа не погасне. За другим правилом Кірхгофа для цього кола маємо 1 де Uk напруга на конденсаторі та неоновій лампі яка підключена до нього паралельно.15 видно що напруга на конденсаторі монотонно зростає із швидкістю яка залежить від величини добутку RC.

Украинкский

2013-08-04

86 KB

1 чел.

Робота 7

Релаксаційні коливання у схемі з неоновою лампою.

Власні коливання будь-якої затухаючої системи є затухаючими. Для того, щоб вони стали незатухаючими, необхідні зовнішні впливи: в механіці – зовнішніх сил, в електриці – зовнішніх напруг. У цьому випадку виникають так звані вимушені коливання. Але існують системи, в яких незатухаючі коливання можливі без зовнішніх періодичних впливів. Вони називаються автоколиваннями, а сам процес – автоколиванням.

До авто коливних систем входить джерело енергії. Воно періодично вмикається самою системою і вводить енергію, яка компенсує витрати на подолання тертя у випадку механічної системи або тепла Ленца-Джоуля у випадку електричної системи, що і робить коливання незатухаючими.

Розглянемо електричну автоколивну систему з неоновою лампою. Газорозрядна неонова лампа являє собою скляний балон, заповнений неоном, в якому розміщено два електроди у вигляді коаксіальних /із спільною віссю/ циліндри. При невеликій напрузі на електродах струм, що проходить через лампу, дорівнює нулеві. Якщо напруга досягне певної величини, яка називається напругою запалювання U3, лампа спалахне, і струм стрибком досягне скінченої величини I3. При дальшому збільшенні напруги струм відповідно зростає. Якщо змінювати напругу у зворотному напрямі, тобто зменшувати, то струм зменшуватиметься, але графічно піде по другій кривій. Коли напруга спаде до величини U3, лампа не погасне. Вона згасне лише при напрузі Ur, яка дещо менша U3, тобто U3Ur. При напрузі Ur струм стрибком спаде і лампа згасне. Властивості неонової лампи повністю пояснюють механізм коливань у схемі за мал.14.

Якщо замкнути ключ К, то через опір R потече струм , який заряджатиме конденсатор С. За другим правилом Кірхгофа, для цього кола маємо , /1/

де Uk напруга на конденсаторі та неоновій лампі, яка підключена  до нього паралельно.

Відомо, що , а ; звідси . Підставимо значення сили струму в рівняння /1/:. Розв’язком цього диференціального рівняння буде  /мал.15, лінія оаа//.

З мал.15 видно, що напруга на конденсаторі монотонно зростає із швидкістю, яка залежить від величини добутку RC. Величина =RC називається сталою часу або релаксації. Напруга на конденсаторі при зростанні, взагалі кажучи, повинна була б асимптотично наближатися до е.р.с. джерела Е. У нашій схемі напруга на конденсаторі зможе зрости лише до величини U3, тому що як тільки вона досягне цієї величини, спалахне неонова лампа, яка підключена до конденсатора, і конденсатор почне через неї розряджатися. Лампу в стані провідності можна розглядати як малий опір r. Конденсатор розряджається через неї за законом . Оскільки час розрядження відносно малий, ми нехтуємо тим зарядом, який надходить за цей час до конденсатора від джерела струму. Отже, через неонову лампу протікає струм

.  /2/

конденсатор розряджатиметься, поки напруга на ньому не досягне Ur; після цього неонова лампа згасне /лінія аб/. Далі на конденсаторі напруга знову почне зростати, досягне потенціалу спалаху неонової лампи /лінія бс/. Цей процес зарядження і розрядження буде періодично повторюватися, і неонова лампа ритмічно буде спалахуватиме з періодом T.

Величина T являє собою суму часу 2 зарядження від напруги Ur до напруги та часу t1 розрядження від напруги U3 до напруги Ur.. Оскільки r<<R, то t1<<t2 і часом t1 можна знехтувати. Час t2=t2-t1, де t1 – час, за який напруга на конденсаторі зросте від 0 до U3. З формул  і  визначаємо ; , звідки

.

Мета роботи: вивчити одну з найпростіших релаксаційних авто коливних схем з неоновою лампою.

Необхідні прилади: неонова лампа, магазин великих опорів, магазин ємностей, вольтметр, осцилограф, випрямляч, секундомір, ключ.

Для того, щоб дослідити характер струму, який протікає через неонову лампу, потрібно послідовно з нею ввімкнути опір r1 /820 Ом/ і напругу з нього подати на осцилограф /мал.16/. При цьому r1 повинно бути меншим R, щоб істотно не змінювати електричний стан кола струму. Напруга на r1 пропорційна струмові, що протікає через нього і, отде, характер зміни її, який ми бачимо на осцилографі, відповідатиме характерові зміни струму. Струм, що проходить через лампу, складається х окремих коротких імпульсів /мал.15/.

Завдання та обробка результатів вимірювань.

  1.  Скласти схему згідно мал.16.
  2.  Встановити r1=0, R=0 і С=0 і заміряти потенціали спалаху та згасання неонової лампи /зробити п’ять вимірювань і взяти середнє значення/.
  3.  Встановити Е> U3 /U3=Е/, С=1мкФ, R=1мОм і визначити за допомогою секундоміра період спалахів  50.
  4.  Повторити вимірювання для опорів від 900 до 100кОм через 100кОм при незмінному С.
  5.  Зробити ті ж самі вимірювання при С=2мкФ.
  6.  Приєднати до точок а1а2 осцилограф і накреслити формулу напруги Uк на конденсаторі та лампі.
  7.  Ввести в схему опір r1, приєднати до нього осцилограф і накреслити форму I2.
  8.  Побудувати залежність T=f(R).
  9.  Перевірити для якогось одного опору, чи дійсно подвоєння ємності приводить до подвоєння періоду.
  10.  Для однієї з точок обчислити T за формулою і порівняти з вимірами.

Контрольні питання.

  1.  Який розряд називається несамостійним і який самостійним?
  2.  Чому лампу можна використовувати для одержання електричних коливань?
  3.  Як змінний струм випрямляється кенотроном?
  4.  Вивести формулу для періоду зарядження і розрядження конденсатора.
  5.  Як змінюється період релаксаційних коливань при збільшенні Е?
  6.  Яким повинен бути період релаксаційних коливань, щоб на екрані осцилографа можна було спостерігати стійку нерухому картину?
  7.  Принцип дії, вольт-амперна характеристика і параметри стабіловольта. Роль правильного вибору полярності підключення його електродів до джерела е.р.с..

Список літератури.

1. Горелик Г.С. Колебания и волны. – М., 1956.-С. 123-125.

2.  Сивухин Д.В. Общий курс физики. –.М., 1983.-С. 498-535, 600-602.



 

А также другие работы, которые могут Вас заинтересовать

25351. Состав и функции крови 41 KB
  Существует два понятия: периферическая кровь состоящая из плазмы и находящихся в ней во взвешенном состоянии форменных элементов и система крови куда относят периферическую кровь органы кроветворения и кроверазрушения костный мозг печень селезенка и лимфатические узлы. Кровь является своеобразной формой ткани и характеризуется рядом особенностей: жидкая среда организма находится в постоянном движении составные части крови имеют разное происхождение образуются и разрушаются в основном вне ее. Плазма крови лишенная фибриногена...
25352. Иммуно-биологические свойства крови 34 KB
  03 а удельный вес крови 1. У человека осмотическое давление крови составляет около 770 кПа 7. Клетки крови имеют осмотическое давление одинаковое с плазмой.
25353. Регуляция системы крови 44.5 KB
  В организме существует два основных механизма регуляции системы крови нервный и гуморальный. Высшим подкорковым центром осуществляющим нервную регуляцию системы крови является гипоталамус. Кора головного мозга оказывает влияние на систему крови также через гипоталамус.
25354. Регуляция работы сердца 41.5 KB
  Закон сердечного ритма чем больше приток крови тем больше сила и частота сердечных сокращений. Хеморецепторы возбуждаются в результате сдвигов химического состава плазмы крови при увеличении в ней рСО2 или снижения рО2. Гуморальная регуляция деятельности сердца осуществляется путем воздействия на него химических веществ находящихся в крови. 0051 ДВИЖЕНИЕ КРОВИ ПО СОСУДАМ ГЕМОДИНАМИКА Движение крови по сосудам обусловлено градиентом давления в артериях и венах.
25355. Регуляция движения крови в сосудах 83.5 KB
  Если же перерезать мозг между продолговатым и спинным максимальное давление крови в сонной артерии понижается с нормальных 100 120 до 60 70 мм рт. Спинномозговые центры способны через некоторое время после выключения сосудосуживающего центра продолговатого мозга немного повысить давление крови снизившееся вследствие расширения артерий и артериол. При введении через канюлю в изолированный каротидный синус крови под давлением можно наблюдать падение артериального давления в сосудах тела.
25356. Регуляция движения крови по сосудам 24.5 KB
  Нервы регулирующие тонус сосудов называются сосудодвигательным и состоят из двух частей сосудосуживающих и сосудорасширяющих Симпатические нервные волокна выходящие в составе передних корешков спинного мозга оказывают суживающее действие на сосуды кожи органов брюшной полости почек легких и мозговых оболочек но расширяют сосуды сердца. Сосудорасширяющие влияния оказываются парасимпатическими волокнами которые выходят из спинного мозга в составе задних корешков. Кроме того существуют высшие сосудодвигательные центры расположенные в...
25357. Лимфа и лимфообращение 43 KB
  В отличие от кровеносных сосудов которым происходит как приток крови к тканям тела так и ее отток от них сосуды служат лишь для оттока лимфы т. Состав и свойства лимфы Лимфа собираемая из лимфатических протоков во время или после приема нежирной пищи представляет собой бесцветную почти прозрачную жидкость отличающуюся от плазмы крови примерно вдвое большим содержанием белков. Реакция лимфы щелочная. Это обусловлено тем что лимфоциты образуются в лимфатических узлах и из них с током лимфы уносятся в кровь.
25358. ФИЗИОЛОГИЯ ВНЕШНЕГО ДЫХАНИЯ. ЛЕГОЧНЫЕ ОБЪЕМЫ. ЛЕГОЧНАЯ ВЕНТИЛЯЦИЯ 41.5 KB
  При вдохе объем легких увеличивается давление в них становится ниже атмосферного и воздух поступает в дыхательные пути. Во время выдоха объем грудной полости уменьшается воздух в легких сжимается давление в них становится выше атмосферного и воздух выходит наружу. Количество воздуха находящегося в легких после максимального вдоха составляет общую емкость легких величина которой у взрослого человека равна 46 л. В общей емкости легких принято выделять четыре составляющих ее компонента: дыхательный объем резервный объем вдоха и выдоха и...
25359. Особенности дыхания при мышечной работе 36.5 KB
  Увеличению транспорта кислорода при работе способствует также выбрасывание эритроцитов из кровяных депо и обеднение крови водой вследствие потения что ведет к некоторому сгущению крови и повышению концентрации гемоглобина а следовательно и к увеличению кислородной емкости крови. Из каждого литра крови протекающей по большому кругу клетки организма утилизируют в покое 60 80 мл кислорода а во время работы до 120 мл кислородная емкость 1 л крови равна около 200 мл 02. Повышенное поступление кислорода в ткани при мышечной работе...