22834

РЕОСТАТ І ПОДІЛЬНИК НАПРУГИ

Лабораторная работа

Физика

РЕОСТАТ І ПОДІЛЬНИК НАПРУГИ Реостат і подільник напруги це прилади що застосовуються для регулювання сили струму і напруги в електричних схемах. Спад напруги на опорінавантаженні а на реостаті напруга на опорінавантаженні змінюватиметься від до . Подільником напруги може правити реостат з трьома клемами який підключається до електричного кола так як зображено на мал. Переміщуючи точку вздовж подільника напруги можна одержати будьяку напругу від до 0.

Украинкский

2013-08-04

139.5 KB

9 чел.

Робота 1. РЕОСТАТ І ПОДІЛЬНИК НАПРУГИ

Реостат і подільник напруги – це прилади, що застосовуються для регулювання сили струму і напруги в електричних схемах.

Реостат являє собою опір, величину  якого можна регулювати. Він завжди вмикається послідовно з опором-навантаженням /мал.1/. Струм, що протікає через систему таких послідовно ввімкнених опорів, згідно закону Ома, дорівнює
.
Якщо опір реостата  змінювати від 0 до
 ,то струм відповідно змінюється від     до     . Спад напруги на опорі-навантаженні , а на реостаті напруга на опорі-навантаженні змінюватиметься від  до . Видно, що за допомогою реостата можна значно змінити струм  та напругу  і дістати , , і лише в тому випадку, коли опір  значно менший повного опору реостата
.

Подільником напруги може правити реостат з трьома клемами, який підключається до електричного кола так, як зображено на мал.2. Джерело струму підключають до крайніх клем  та . Потрібну напругу знімають з крайньої клеми  та з клеми повзунка  . Якщо знехтувати внутрішнім опором джерела, а величину опору-навантаження вважати нескінченно великою, то різниця потенціалів між точками потенціометра  і  буде дорівнювати
.
У цій формулі ,  - величина опорів відповідних ділянок потенціометра,  - величина загального опору потенціометра.

Переміщуючи точку  вздовж подільника напруги, можна одержати будь-яку напругу  від  до 0.

У випадку, коли до точок  і  приєднано опір  скінченної величини, струм у точці  розгалужується. Частина його потрапляє на потенціометр, а частина  йде через навантаження. За законом Ома
.
І в той же час . Шляхом нескладних алгебраїчних перетворень можна знайти, що напруга, прикладена до опору  , , може бути обчислена за формулою
.
Як видно з цієї формули, змінюючи  від 0 до , можна відповідно змінити  від 0 до . Слід зауважити, що у загальному випадку залежність  від  не є лінійною. Така залежність тим більше наближається до лінійної, чим більша величина опору-навантаження на загальний опір потенціометра, тобто при
.

Мета роботи: усвідомити принцип роботи реостата і подільника напруги. Навчитись цілеспрямовано підбирати потрібні за величиною опору прилади /змінні опори/ для регулювання сили струму і напруги в електричних колах.

Необхідні прилади: два змінних опори, два вольтметри, міліамперметр, магазин опорів, ключ, джерело струму.

Завдання та обробка результатів вимірювань

  1.  Ознайомитись з будовою повзункового реостата.
  2.  Зібрати схему реостата /мал.1/, використовуючи як навантаження магазин опорів. Зняти залежність струму і напруги від положення повзунка для двох значень опору-навантаження: та . Зняти залежність напруги  та струму  від положення повзунка для двох значень опору-навантаження:  та .

    

  1.  Одержані результати занести до таблиці:

№№

п/п

,

м

,

Ом

Виміри

Розрахунки

, mА

, B

, mА

, B

Розрахунок опору виконується за формулою :
,
де ,  - довжини відповідних ділянок обмотки змінного опору. Таблиць має бути чотири: дві для схеми з реостатом та дві для схеми з потенціометром.

  1.  За даними таблиць побудувати 8 графіків: по 4 для залежностей  та . На кожному з 8 графіків зіставити практично одержані та обчислені за теоретичними формулами результати.

Контрольні питання

  1.  Чим відрізняється регулювання сили струму і напруги в електричних колах за допомогою реостата і подільника напруги?
  2.  Коли раціональніше застосовувати схему реостата і коли схему потенціометра?
  3.  При якій умові схема подільника напруги дозволяє плавно регулювати напругу в колі?
  4.  Задано опір споживача і джерело струму кола. Що потрібно врахувати, добираючи величини опору реостата і подільника напруги?

Список літератури

  1.  Борбат О.М. та ін. Електричний практикум. – К., 1964. – с.16-17, 20-23.
  2.  Калашников С.Г. Электричество. – М., 1970. – с.152-154.


 

А также другие работы, которые могут Вас заинтересовать

19955. Программа комплексной стандартизации методов, облучательных устройств и технических требований к реакторным и стендовым испытаниям 23.73 KB
  Рассмотреть программу комплексной стандартизации методов, облучательных устройств и технических требований к реакторным и стендовым испытаниям. Познакомить слушателей с каталогом и рубрикатором методов радиационных испытаний материалов и изделий ядерной техники в реакторах и защитных камерах и отраслевыми стандартами.
19956. Классификаций реакторных испытаний 28.86 KB
  Любую классификацию, по-видимому, следует рассматривать как, достаточно, подвижную форму упорядочения наших представлений. Именно поэтому ее не следует считать законченной и устоявшейся. К представленной ниже классификации необходимо относиться как к одному из многих возможных вариантов, который может дополняться и уточняться.
19957. Исследовательские реакторы ИРТ-2000 (проект) и ИРТ-МИФИ 28.79 KB
  Рассмотреть ядерный исследовательский реактор как источник излучений для реакторных испытаний. Познакомить слушателей с техническими характеристиками исследовательских реакторов Российской Федерации. Обосновать выбор реакторов для последующего детального рассмотрения. Дать общие представления о проекте типового исследовательского реактора ИРТ-2000 и рассмотреть возможности реактора ИРТ-МИФИ.
19958. Исследовательский реактор ИВВ-2- пример максимально возможного использования оборудования типового проекта ИРТ-2000 29.79 KB
  Познакомить слушателей с техническими характеристиками исследовательского реактора ИВВ-2, результатами его модернизации, устройством активной зоны и его возможностями и приспособленностью для проведения реакторных испытаний. Рассмотреть картограмму активной зоны и распределения потоков излучений по экспериментальным каналам.
19959. Исследовательский реактор СМ-2- пример достижения максимально возможных значений плотностей нейтронных потоков 214.92 KB
  Познакомить слушателей с техническими характеристиками исследовательского реактора CМ-2, устройством активной зоны и его возможностями для проведения реакторных испытаний. Рассмотреть картограмму активной зоны и распределения потоков излучений по экспериментальным каналам.
19960. Исследовательский реактор БР-10 – база проверки работоспособности элементов активных зон быстрых реакторов 33.21 KB
  Познакомить слушателей с техническими характеристиками исследовательских реакторов БР-10 и МИР, устройством их активных зон, их возможностями для проведения реакторных испытаний. Рассмотреть картограммы активных зон и распределения потоков излучений по экспериментальным каналам.
19961. Общая схема последовательности стадий разработки облучательного устройства 28.5 KB
  Познакомить слушателей с вопросами разработки и конструирования облучательных устройств для пассивных и активных реакторных испытаний. Обратить внимание на специфику конструкторских разработок облучательных устройств, последовательность проведения этой работы. Выделить наиболее важную задачу для разработки конструкции облучательного устройства- расчет поля температуры по его элементам. Приступить к постановке задачи расчета температурного поля.
19962. Вывод уравнения теплового баланса для любого элемента облучательного устройства 24.63 KB
  Вывести уравнения теплового баланса для любого элемента облучательного устройства. Обратить внимание слушателей, что после проведения соответствующих алгебраических операций решение задачи о поле температуры сводится к решению системы обыкновенных дифференциальных уравнений с постоянными коэффициентами второго порядка и может быть представлено в гиперболических функциях.
19963. Схема тепловых расчетов для конкретной экспериментальной установки 29.19 KB
  Рассмотреть конкретный пример использования методики расчета температурного поля облучательного устройства. В качестве примера предлагается облучательное устройство Ритм, предназначенное для комплексного исследования пластических свойств ядерного топлива и газовыделения при одновременной регистрации акустической эмиссии в процессе облучения.