22854

ВИЗНАЧЕННЯ ВІДНОШЕННЯ ТЕПЛОЄМНОСТЕЙ ПОВІТРЯ ЗА СТАЛОГО ТИСКУ І СТАЛОГО ОБ’ЄМУ

Лабораторная работа

Физика

Знання  є важливим оскільки безпосереднє вимірювання CV становить значні експериментальні труднощі при V=const маса газу а отже його теплоємніcть завжди малі порівняно з відповідними величинами для калориметра і теплоємність CV звичайно обчислюють за формулою CV = CP  оскільки вимірювати CP значно зручніше. Відповідно до класичної теорії теплоємності ідеальних газів для одноатомного газу теплоємність CV = 3R 2 для газу що складається із двоатомних молекул міжядерну відстань у яких при не дуже високих температурах можна...

Украинкский

2013-08-04

96 KB

5 чел.

3

Робота №3

ВИЗНАЧЕННЯ ВІДНОШЕННЯ ТЕПЛОЄМНОСТЕЙ ПОВІТРЯ

ЗА СТАЛОГО ТИСКУ І СТАЛОГО ОБ’ЄМУ

Вступ. Теплоємністю тіла називають відношення кількості теплоти δQ поглинутої тілом при нескінченно малій зміні його температури dT до  цієї зміни (C=δQ/dT). Речовини характеризують теплоємністю одиниці маси речовини (питома теплоємність, одиницею якої є Дж/(кг∙K) або теплоємністю одного моля речовини (молярна теплоємність, одиницею якої є Дж/(моль∙K).

Метою цієї роботи є визначення відношення теплоємності за сталого тиску CP до теплоємності за сталого об`єму CV, тобто величини  CP/CV,  для повітря.

Метод, яким у цій роботі визначається відношення CP/CV  було запропоновано Клеманом і Дезормом.

Теоретичні відомості. Кількість теплоти поглинутої тілом при зміні його стану залежить не лише від його початкового та кінцевого станів, зокрема, від його початкової та кінцевої температури, але і від способу, в який було здійснено перехід від початкового до кінцевого стану. Відповідно від  цього залежить і теплоємність тіла. Звичайно, розрізняють теплоємність за сталого тиску CP  і теплоємність за сталого об`єму CV, якщо в процесі нагрівання підтримують, відповідно,  сталий тиск Р або  сталий об`єм V. При нагріванні за сталого об’єму (V=const, ізохоричний процес) уся підведена до тіла теплота йде на збільшення його внутрішньої енергії,  тоді як при нагріванні за сталого тиску (P=const, ізобаричний процес) на збільшення внутрішньої енергії тіла йде лише частина підведеної до тіла теплоти, оскільки інша частина йде на виконання роботи  розширення тіла. Отже, CP завжди більше за CV. Для твердих тіл і рідин різниця між CP та CV  незначна, оскільки зміни їх об’єму при нагріванні невеликі. Для газів характерна значна зміна об’єму при ізобаричному нагріванні, отже різниця CP - CV може бути значною, і, відповідно, відношення  = CP/CV може суттєво відрізнятися від одиниці. Знання є важливим, оскільки безпосереднє вимірювання CV становить значні експериментальні труднощі (при V=const  маса газу, а отже його теплоємніcть завжди малі порівняно з відповідними величинами для калориметра), і теплоємність CV звичайно обчислюють  за формулою CV  = CP/ , оскільки  вимірювати CP  значно зручніше.

Для газів, розріджених настільки,  щоб  їх  можна  було  вважати ідеальними,  різниця молярних  теплоємностей

                                                           CP - CV R,                                                     (1)

де R – універсальна газова стала, що дорівнює 8,314 Дж/(моль∙K) . Відповідно до класичної теорії теплоємності  ідеальних газів для одноатомного газу теплоємність CV = 3R/2, для газу, що складається із двоатомних молекул, між’ядерну відстань у яких  при не дуже високих температурах можна вважати незмінною, CV =5R/2, а для ідеального газу багатоатомних жорстких молекул CV =6R/2. Відповідно, значення для ідеальних газів, що складаються з одноатомних, двоатомних та багатоатомних жорстких молекул становлять 1,67,  1,4 та 1, 33.

Якщо газ можна вважати ідеальним, то за відомим відношенням молярних  теплоємностей γ можна навіть знайти їх абсолютні величини. Дійсно, розв’язуючи систему  двох рівнянь, що включає рівняння (1) та рівність  = CP/CV, можна знайти самі теплоємності CV = R/(1) та   CP = R/(1).  

Опис методу. Метод Клемана й Дезорма для визначення відношення CP/CV ґрунтується на використанні рівняння адіабатичного процесу, відповідно до якого параметри початкового й кінцевого  станів деякої кількості газу зв’язані співвідношенням

                                                                                                                    (2)

де  = CP/CV  - так звана стала адіабати.  

Відповідно стала адіабати γ може бути обчислена за відомими P1, T1, P2, T2:

                                                  

 (3)

Таким чином, необхідно здійснити адіабатичний процес, у якому  досліджуваний газ з одного стану з відомими параметрами P1, T1 переводиться  до іншого стану з відомими параметрами P2, T2.

Цей метод реалізується за допомогою лабораторної установки,  схема якої наведена на Рис. 1. Установка складається зі скляного балона Б об’ємом у декілька літрів, безпосередньо сполученого  з U-подібним водяним манометром M, та з насоса Н, що сполучається з балоном Б через кран К1. Балон може також сполучатися з атмосферою через відкритий кран К2.  

При закритому крані К2 через відкритий кран К1 до балона за допомогою насоса нагнітають невелику порцію повітря, щоб тиск у балоні став вищим за атмосферний і закривають кран К1. Різниці тисків у балоні та в атмосфері відповідає різниця рівнів рідини у колінах манометра. Ця різниця після закривання крана К1 зменшується, прямуючи до деякого рівноважного значення h1, яке відповідає тиску газу P1, що встановився в балоні, а саме

P1 = P0 + Δp1’       (4) 

де P0 – атмосферний тиск, а Δp1  - наявна різниця тисків в балоні та в атмосфері пропорційна різниці рівнів рідини у колінах манометра (Δp1=k h1).   

Цей процес зменшення тиску спричинюється зниженням температури газу в закритому балоні, яка зразу після закривання крана К1 була вищою за температуру оточуючого балон повітря T0   внаслідок попереднього нагрівання газу при швидкому нагнітанні насосом. Таким чином, після припинення зміни різниці рівнів рідини в колінах манометра стан газу в балоні  характеризується тиском P1 та температурою T1, причому P1 дається формулою (4),  а T1 = T0. 

Якщо тепер швидко відкрити кран К2, повітря з балона буде розширюватись в атмосферу доти, поки тиск у балоні не зрівняється з атмосферним. При цьому температура повітря  в балоні знизиться до деякої температури Т2, оскільки газ, що знаходився в балоні здійснив роботу проти сили атмосферного тиску по викиданню повітря з балона в атмосферу, внаслідок чого зменшилась  його внутрішня енергія, а зовнішній приток теплоти до газу всередині балона за короткий час розширення (2-3 секунди) дуже малий і не здатний компенсувати це зменшення. Таким чином, цей процес можна вважати адіабатичним, тобто таким, при якому теплообмін між газом в балоні і зовнішніми тілами відсутній1.

Після закінчення процесу адіабатичного розширення параметри газу в балоні будуть такі: тиск P2, що дорівнює атмосферному (P2=P0) та невідома температура Т2, яку необхідно знати, щоб скористатися формулою (3). Цю температуру можна визначити в такий спосіб. Якщо зразу після завершення процесу адіабатичного розширення закрити кран К2, тиск газу у балоні почне поступово зростати внаслідок його нагрівання теплотою, що передається газу від стінок балона. Зростання тиску припиниться, коли температура газу в посудині стане рівною температурі повітря в лабораторії T0. При цьому встановиться деяка різниця рівнів у колінах манометра  h2, пропорційна наявній різниці тисків у балоні та в атмосфері  Δp2 (Δp2=kh2).   Отже параметри цього третього стану газу, що встановився,  будуть такі

                                      P3 = P0 + Δp2, T3 =T0                              (5).

Оскільки перехід від другого до третього стану здійснено ізохорно (V=const), то параметри цих станів зв’язані співвідношенням

.                                (6) .

Підставляючи  в (3) відомі значення P3, T3, та P2  можна розрахувати шукане значення температури Т2:

  .                        (7)

 Тепер є  всі  необхідні  для  підстановки до  формули  (3)  величини: P1 = P0 + Δp1 , T1 =T0 ,    P2 = P0   та   T2 ,  що дається формулою (7). Після такої підстановки, здійснюючи прості алгебраїчні перетворення із врахуванням того, що Δp1, Δp2 << P0 , і з застосуванням відомої з курсу математичного аналізу наближеної формули ln(1+x) ≈ x справедливої для << 1, послідовно дістанемо (8):

.

Отже запропонований і здійснений Клеманом і Дезормом в 1819 р. метод дозволяє повністю уникнути  вимірювань абсолютних значень тиску і температури досліджуваного газу і звести всю вимірювальну частину роботи лише до фіксації різниць рівнів у колінах водяного манометра!

Порядок вимірювань

  1.  Відкрити кран К1 .
  2.  Закрити кран К2.
  3.  Повітряним насосом Н через кран 1 накачати в балон Б трохи повітря.
  4.  Спостерігати за зміною різниці рівнів рідини у колінах манометра і після її усталення виміряти й записати рівноважне значення цієї різниці h1.
  5.  Швидко відкрити й закрити кран К2,  здійснивши, таким чином, процес адіабатичного розширення і, розпочавши ізохоричний процес.
  6.  Спостерігати за зміною різниці рівнів рідини у колінах манометра і після її усталення виміряти й записати рівноважне значення цієї різниці h2.
  7.  За формулою (8) розрахувути величину  gCP/CV.

Завдання.

  1.  Виконати декілька разів вимірювання відповідно до наведеного вище Порядку вимірювань.
  2.  Обчислити середнє значення величини  = CP/CV.
  3.  Оцінити точність отриманого результату. Проаналізувати фактори, що впливають на точність результату.
  4.  Порівняти отримане значення CP/CV  з теоретично очікуваним для двоатомного ідеального газу, а також із відомими результатами експериментального визначення CP/CV  для повітря та для газів, які входять до його складу.
  5.  Припускаючи, що повітря в умовах виконаної лабораторної роботи, можна вважати ідеальним газом, розрахувати його молярні теплоємності CP та CV  і порівняти їх із даними, наведеними в довідниках.
  6.  Проаналізувати причини розбіжностей, встановлених у п. п. 4 і 5, та  вказати характер впливу різних чинників на отриманий в роботі результат: неврахування цих чинників призводить до завищення чи до заниження  величини  ? 

                          Рис 1.

Н1

Н2

Н112

23

6

1,352941

17

5,4

1,465517

16

4

1,333333

28,3

7,5

1,360577

28

7

1,333333

15,8

3,6

1,295082

Середнє

1,356797

1 За означенням адіабатичним називається процес, що відбувається без підведення або відведення теплоти (δQ=0). Оскільки кількість підведеної або відведеної теплоти теплоти δQ  пропорційна величині потоку тепла і часу , то реальний процес буде тим ближчий до адіабатичного, чим краща теплоізоляція досліджуваного тіла і чим менша тривалість процесу. В нашому досліді ніяких спеціальних заходів щодо термоізоляції повітря в балоні не вживається, а адіабатичність процесу забезпечується  його малою тривалістю.   


 

А также другие работы, которые могут Вас заинтересовать

53273. Учет выбытия основных средств. Учет результатов инвентаризации материалов 107.62 KB
  Для определения целесообразности и непригодности объекта основных средств к дальнейшему использованию, невозможности или неэффективности его восстановления, а также для оформления документации на списание указанных объектов в организации приказом руководителя может быть создана постоянно действующая комиссия
53274. Гузелька и Лена на уроке физкультуры 21 KB
  Физрук: Атьдва атьдва атьдва ух мои девчулечки мои красотулечки. бьет по попе девочку она ему пощечину Ф: Двааа. Эх хорошо быть физруком девчулечки не отстаем атьдва атьдваНЕ отстаем свистит в свисток Выбегают 2 девочки. Ф: Выше ноги атьдва атьдва.
53275. Не обміліє пам’яті ріка… 59 KB
  Хід уроку: Слово вчителя: У 2012 році подвигу підпільної організації Молода гвардія чиє життя боротьба та незламна воля завжди були та будуть прикладом для всіх поколінь нашого народу виповнюється 70 років. Тому і перший урок буде присвячений тим хто в роки Великої Вітчизняної війни захищаючи наш край навічно залишився молодим тим хто віддав своє життя заради того щоб сьогодні жили ми. Яскраво й світло майбуття яснилось Та раптом зблідли обрії ясні Війна як привид у життя вселилась І корективи вправила свої....
53276. Гімнастика як дієвий засіб оздоровлення дітей в дошкільному навчальному закладі 163.5 KB
  Ведмежатасилачі молодша група Діти заповзають до зали спираючись на руки та ноги і сідають біля розкладених гир. Сидячи ноги разом руки з гантелями на колінах. Ноги на ширині пліч руки з гантелями біля тулуба пояса. Ноги поставити разом руки з гантелями простягнути перед собою і присідати 5 разів.
53277. EVERYDAY HEALTHY HABITS 107 KB
  Aims:to practice some grammar points (adverbs of frequency, Present Simple, Present Continuous); to ask and answer questions to find out about classmates’ health habits; to give practice in reading a text for specific information; to develop students’ listening skills; to create a relaxed, non-threatening atmosphere in the classroom.
53278. Халдейське царство 45 KB
  Мета: розкрити роль і значення Халдейського царства в історії стародавнього світу, виробляти в учнів уміння аналізувати, спів- ставляти, узагальнювати вивчений матеріал, висловлювати власну думку, розвивати творче мислення школярів, виховувати інтерес до історії найдавніших цивілізацій
53279. TRADITIONS. CUSTOMS. HALLOWEEN 95.5 KB
  The ancient people who inhabited what we now call Great Britain divided the year into two seasons: growing season and winter. Life and Death. Druids placed great importance on passing of one season to the next. Summer officially ended on October 31-st. On that day people celebrated the Celtic New Year. And the next day was the first day of winter. Being between two seasons it was a very magical time, when the barriers between our world and the spirit world were at their weakest...
53280. Halloween 1.25 MB
  Good morning, boys and girls! I’m glad to see you. I hope you are OK. In our today’s lesson we’ll get to know some new facts about one of the children’s best loved holidays, read the text, sing a song, play a game and do a lot of interesting activities.
53281. Halloween 136.5 KB
  What holiday is it? Ps: It is Halloween T: And what will be the topic of our lesson? Ps: Halloween. T: Yes, you are right. Today we are going to speak about famous American holiday- Halloween. At our lesson we learn new words, make up dialogues, write stories, sing songs and speak about Halloween.