22858

ВИВЧЕННЯ РОБОТИ ДЗЕРКАЛЬНОГО ГАЛЬВАНОМЕТРА

Лабораторная работа

Физика

ВИВЧЕННЯ РОБОТИ ДЗЕРКАЛЬНОГО ГАЛЬВАНОМЕТРА Дзеркальний гальванометр – вимірювальний прилад магнітоелектричної системи. Вимірювання сили струму зводиться до реєстрації кутів повороту рамки рухомої системи гальванометра. Найбільш точними дзеркальними гальванометрами можна вимірювати силу струму з точністю до 1011 А і різницю потенціалів до 108 В. Рух рамки із струмом у полі постійного магніту з індукцією В можна описати таким рівнянням: 1 У цьому рівнянні  момент інерції рухомої системи гальванометра  момент сил що протидіють...

Украинкский

2013-08-04

95.5 KB

1 чел.

Робота № 8. ВИВЧЕННЯ РОБОТИ ДЗЕРКАЛЬНОГО ГАЛЬВАНОМЕТРА

Дзеркальний гальванометр – вимірювальний прилад магнітоелектричної системи. Прилад складається з постійного магніту, між полюсними наконечниками якого розміщена легка рамка з обмоткою. Якщо через рамку проходить струм, вона повертається в полі постійного магніту. Вимірювання сили струму зводиться до реєстрації кутів повороту рамки (рухомої системи) гальванометра. Найбільш точними дзеркальними гальванометрами можна вимірювати силу струму з точністю до 10-11 А і різницю потенціалів до 10-8 В.

Рух рамки із струмом у полі постійного магніту з індукцією В можна описати таким рівнянням:

  ( 1 )

У цьому рівнянні   момент інерції рухомої системи гальванометра,   момент сил, що протидіють рухові рамки, D  момент сил, обумовлених пружністю підвісу рамки, BNQI  момент сил, обумовлений взаємодією рамки з струмом з магнітним полем постійного магніту, де N кількість витків обмотки, Q  площа витка,       кутове відхилення рамки.

Слід мати на увазі, що P = P1 + P2 , де P1 коефіцієнт    гальмування рухомої системи під впливом тертя; P2 - коефіцієнт електромагнітного гальмування, яке є наслідком того, що в рамці під руху виникають індукційні струми.

Аналіз розв’язку диференційного рівняння ( 1 ) показує, що можливі три режими руху рамки гальванометра:

а)      -  коливний із затухаючою амплітудою;

б)       -  аперіодичний;

в)       -  аперіодичний з найбільш швидким

урівноваженням рамки.

Режим в) називається критичним. Опір зовнішнього кола, що його забезпечує, називається критичним ( Rкр ) . Коли рамка врівноважена d = 0 , момент сил, що діють на рамку з боку магнітного поля, зрівнюється з моментом закручування нитки підвісу:

BNQI = D0 , ( 2 )

де I - сила струму, що проходить по виткам рамки і викликає її відхилення на кут 0 .

Характеристиками гальванометра є динамічна стала Ci та струмова чутливість Si . Динамічна стала дорівнює силі струму, який відхиляє рухому систему гальванометра на кут в один радіан . Таким чином, з формули ( 2 ) випливає, що

 ,       .  ( 3 )   

Вольтова чутливість гальванометра Su визначається із співвідношення

,           ( 4 )

де RG  -  внутрішній опір гальванометра.

Гальванометр магнітоелектричної системи можна використати для вимірювання малих значень електричного заряду. При цьому необхідно, щоб час дії імпульсу струму був значно менший за період власних коливань рухомої системи T0 . Тоді перше відхилення рухомої системи пропорційно заряду, який переносить через рамку імпульс струму. Такий режим роботи гальванометра називається балістичним. Визначимо балістичну сталу та балістичну чутливість гальванометра магнітоелектричної системи.

Рухома система балістичного гальванометра за час  << T0 майже не переміщується.  Тому для часу 0 < t <  можна вважати     = 0 .

 За цих умов рівняння руху рамки (1) набуває вигляду

.  ( 5 )

Після інтегрування правої та лівої частин в межах від 0 до  одержуємо

.   ( 6 )       

Оскільки   ,  (0)= ( )=0      то

.                        ( 7 )                                  

В ( 6 ) та ( 7 ) q - заряд, що протікає за час   через рамку гальванометра. При визначенні кутової швидкості рамки на момент  t =   необхідно врахувати, що вся кінетична енергія рамки перетворюється на потенціальну енергію пружної деформації підвісу при першому повороті рухомої системи на кут 0 , тобто

. ( 8 )

Звідси .  ( 9 )

Підставляючи це значення до виразу ( 7 ), маємо

. ( 10 )

Отже,балістична стала

,  ( 11 )

балістична чутливість

.  ( 12 )

Мета роботи: ознайомитись з роботою вимірювальних приладів магнітоелектричної системи; визначити чутливість гальванометра до струму та напруги; виміряти внутрішній опір гальванометра та критичний опір; визначити балістичну сталу гальванометра.

Необхідні прилади: дзеркальний гальванометр, магазини опорів, джерело напруги, ємності на 1 і 2 мкФ, вольтметр, ключі.

Для вимірювання характеристик дзеркального гальванометра застосовується схема, наведена на мал. 17. Дзеркальний гальванометр дозволяє пропускати струм 10-6 – 10-9 А. Тому для нього необхідно прикладати напругу не більше 10-4 В ( опір гальванометра 106 Ом ). У нашій роботі цього досягають за допомогою подільника напруги R і опору R2. Напругу від батареї      ( 2.5 В ) прикладають до подільника напруги R ( 105 Ом ), частину якого підключають до дзеркального гальванометра G. У коло гальванометра послідовно з ним ввімкнений змінний опір
R2 =2*104 Ом , за

  

допомогою якого остаточно встановлюється необхідна величина струму. Ключ К3 служить для демпфірування дзеркального гальванометра. Оскільки RG + R2 >> R1, то струм у колі гальванометра

,

де U -  напруга, що прикладається до подільника напруги.

Якщо R2 і R1  замінити таким чином, щоб сила струму залишалась незмінною, то при U =const  ,

або R1( R2 + RG  ) = R1( R2 + RG  ), звідки

.

Тепер можна визначити динамічну сталу гальванометра Ci :

.

Зміщення світлового показчика на шкалі n відраховано в см ~  .

Тоді  ( A/поділ ) ,

Або  .

Завдання та обробка результатів вимірювань

  1.  Зібрати схему на мал. 17.
  2.  Перевести К2 в положення 1. Змінюючи R1 i R2 , добитись відхилення світлового показчика на шкалі.
  3.  Змінити R1 i R2 так, щоб відхилення показчика на шкалі гальванометра n залишалось без зміни. Дослід повторити три рази, залишаючи n = const.
  4.  Визначити період коливань для різних R2 , критичний опір, опір гальванометра і динамічну сталу.
  5.  Для визначення Cбал скласти схему, наведену на
    мал. 18. Встановити ємність 1 мкФ. Зарядити її до певної різниці потенціалів. Потім перевести ключ
    К2, ємність розрядити через опір R2 + RG . Дослід повторити, змінюючи різницю потенціалів на обкладинках конденсатора та ємність останнього. Визначити балістичну сталу та балістичну чутливість.

Контрольні питання

  1.  Принцип дії приладів магнітоелектричної системи.
  2.  Чутливість гальванометра до струму і напруги, її звязок з динамічною сталою приладу.
  3.  Метод вимірювання внутрішнього опору і динамічної сталої дзеркального гальванометра.
  4.  Що таке балістичний режим роботи гальванометра?

Список літератури

  1.  Сивухин Д. В. “Электричество”. - М., 1983. – С. 553 - 557.
  2.  Савельев И. В. “Курс общей физики”. – М., 1978. – С. 38-42.  


 

А также другие работы, которые могут Вас заинтересовать

14388. Определение внутреннего сопротивления гальванометра 192.5 KB
  Лабораторная работа № 138 Цель работы: Определение внутреннего сопротивления гальванометра. Определение средней чувствительности и градуирование гальванометра. Изучение зависимости периода колебаний логарифмического декремента затухания и времени успокоения от со...
14389. Проверить линейность усилителей электронного осциллографа 230 KB
  Лабораторная работа № 130 Цель работы: Проверить линейность усилителей электронного осциллографа произвести градуировку усилителей проверить внутренний калибратор напряжений. Приборы и материалы: осциллограф реостат магазин сопротивлений вольтметр. ...
14390. Определение внутреннего сопротивления гальванометра 144 KB
  Лабораторная работа № 32 Цель работы: Определение внутреннего сопротивления гальванометра. Расчет добавочного сопротивления для использования гальванометра в качестве вольтметра. Приборы и материалы: гальванометр магазины сопротивлений – 2 реостат вольтметр выкл...
14391. Измерение высокого вакуума 80 KB
  Лабораторная работа №010 Измерение высокого вакуума. Задача работы: Получение графиков зависимости ионного тока от тока эмиссии напряжения на сетке и напряжения на коллекторе ионизационной лампы. Получение приближённого значения потенциала ионизаци
14392. Изучить работу ионизационного манометра, зависимость ионного тока от изменения различных параметров 267.5 KB
  Лабораторная работа № 10 Цель работы: Изучить работу ионизационного манометра зависимость ионного тока от изменения различных параметров ток накала напряжение на сетке между катодом и анодом. Приборы и материалы: Ионизационный манометр миллиамперметры – 2 амперме...
14393. Определение вязкости жидкости и исследование зависимости вязкости от температуры 92.5 KB
  Отчет по работе №26 Определение вязкости жидкости и исследование зависимости вязкости от температуры Цель работы: определить вязкость жидкости и исследовать зависимость вязкости от температуры. Приборы: шарики двухстрелочный секундомер катетометр или микр...
14394. Измерение чувствительности и внутреннего сопротивления гальванометра 131.5 KB
  Отчет по работе №32 Измерение чувствительности и внутреннего сопротивления гальванометра Цель работы: определить внутреннее сопротивление гальванометра его чувствительность по току и по напряжению рассчитать шунт и добавочное сопротивление к гальванометру ...
14395. Определить отношение теплоемкостей для воздуха двумя способами 2.92 MB
  Лабораторная работа № 49 Цель работы: Определить отношение теплоемкостей для воздуха двумя способами по скорости звука и расширению газа. Приборы и материалы: Насос емкость баллон манометр. Генератор звуковой частоты микрофон. Определение при помощи расшир...
14396. Произвести градуировку термопары медь – константан 129.5 KB
  Лабораторная работа № 52 Цель работы: Произвести градуировку термопары медь – константан. Измерить э.д.с. термопары в 3х точках. Приборы и материалы: гальванометр ключ на два положения магазины сопротивлений – 3 реостат элемент Вестона. ...