22900

Поняття інверсії

Доклад

Математика и математический анализ

Наприклад в перестановці 4 2 1 3 інверсії утворюють пари чисел 42 41 43 21 Постановка називається парною якщо її елементи утворюють разом парне число інверсій і непарною якщо вони утворюють непарне число інверсій. Наприклад в перестановці 4 2 1 3 елементи утворюють 4 інверсії тобто перестановка парна. В перестановці 2 1 3 4 інверсію утворює лише пара чисел 21 тому перестановка непарна.

Украинкский

2013-08-04

18 KB

1 чел.

Поняття інверсії

Будемо казати, що два числа  в перестановці натуральних чисел утворюють інверсію, якщо >  та в перестановці стоїть раніше від . Наприклад, в перестановці 4, 2, 1, 3 інверсії утворюють пари чисел (4,2), (4,1), (4,3), (2,1)

Постановка називається парною, якщо її елементи утворюють разом парне число інверсій, і непарною, якщо вони утворюють непарне число інверсій.

Наприклад, в перестановці 4, 2, 1, 3 елементи утворюють 4 інверсії, тобто перестановка парна. В перестановці 2, 1, 3, 4 інверсію утворює лише пара чисел (2,1), тому перестановка непарна. В перестановці 1, 2, 3, 4 немає жодної інверсії. Число інверсій дорівнює 0, тому перестановка парна.