22910

Теорема про розклад визначника за елементами рядка або стовпчика

Доклад

Математика и математический анализ

Доповнюючим мінором елемента aij називається визначник Mij який одержуються викресленням з визначника Δ i го рядка та j го стовпчика. Ця теорема дозволяє звести обчислення визначника n го порядку до обчислення визначників порядку n1. Фіксуємо iй рядок визначника Δ та доведемо що всі добутки що складають доданок aijAij входять у визначник Δ причому з таким самим знаком як і у доданку aijAij.

Украинкский

2013-08-04

67 KB

0 чел.

Теорема про розклад визначника за елементами рядка або стовпчика.

Візьмемо визначник

.

Означення. Доповнюючим мінором елемента aij називається визначник Mij, який одержуються     викресленням з визначника Δ i- го рядка та j- го стовпчика. Тобто, викреслюється той рядок і той стовпчик, у яких знаходиться елемент. aij

.

Означення. Алгебраїчним доповненням елемента aij називається число

.Aij=(-1)i+j Mij

Теорема. Визначник n- го порядку дорівнює сумі добутків елементів будь-якого його фіксованого рядка на їх алгебраїчні доповнення.

 

.

Ця теорема дозволяє звести обчислення визначника n- го порядку до обчислення визначників порядку n-1.

Доведення. Будемо доводити теорему в три етапи.

1. Фіксуємо i-й рядок визначника Δ  та доведемо, що всі добутки, що складають доданок aijAij входять у визначник Δ, причому з таким самим знаком, як і у доданку aijAij. Оскільки              aijAij=(-1)i+jaijMij, довільний добуток з доданку aijAij  має вигляд (-1)i+jaija1α1a2α2ai-1αi-1 ai+1αi+1anαn. Оскільки визначник Mij одержується з визначника Δ викресленням i - го рядка та j - го стовпчика, то серед перших індексів в доданках, що складають визначник Mij немає індекса i, а серед других індексів  α1, α2,…, αi-1, αi+1,…, αn, немає індекса j. Тому у виписаному добутку серед перших і серед других індексів є всі числа 1, 2,...,n , а тому цей добуток є добутком визначника   Δ.

Визначимо знак, з яким цей добуток входить до визначника Δ. Для цього скористаємось лемою про знак. Перші індекси утворюють перестановку i,1, 2,...,i-1,i+1,…,n. Тут інверсії утворює лише число i, а кількість таких інверсій i-1. Припустимо, що в перестановці α1, α2,…, αi-1, αi+1,…, αn  число інверсій дорівнює k. Тоді в перестановці j,α1, α2,…, αi-1, αi+1,…, αn  число інверсій k+j-1. А тому, за лемою про знак, даний добуток входить до визначника Δ зі знаком (-1)i-1+k+j-1=(-1)I+j+k-2 . Визначимо знак, з яким цей добуток  входить до доданку aijAij. Добуток  входить до визначника Mij зі знаком(-1)k. Тоді добуток  входить до доданку aijAij=(-1)i+jMij  зі знаком (-1)i+j (-1)k=(-1)i+j+k. Числа i+j+k-2 та i+j+k однакової парності, а тому знаки співпадають.

2. Доведемо теорему, коли визначник Δ має вигляд

В i-му рядку лише один ненульовий елемент. Доведемо, що Δ= aijAij. Ми довели, що всі добутки, що складають доданок aijAij, входять до визначника  Δ, причому при кожному такому добутку знаки в Δ і в aijAij  співпадають. Число таких добутків дорівнює числу всіх добутків, що складають визначник Mij  , тобто(n-1)!. Всі добутки різні. За означенням, у кожному добутку, з яких складається визначник Δ, є співмножник з i - го рядка. Якщо цей співмножник не співпадає з aij, то добуток дорівнює 0. Тому всі ненульові добутки мають співмножником елемент aij. Число таких добутків дорівнює  . Таким чином, всі добутки доданку  є добутками визначника Δ і навпаки. А тому Δ= aijAij..

3. Загальний випадок

i-й рядок визначника можна подати у вигляді суми n рядків

(ai1,ai2,…,ain)= (ai1+0+..0 ..0,0+ai2+...+0,…,0+0+…ain). Тоді за i- м рядком визначник можна розкласти в суму n визначників.

=+

Кожен з одержаних визначників є визначником вигляду, розглянутого на попередньому кроці доведення. Таким чином,  Δ= Δ= ai1Ai1+ ai2Ai2+…+ ainAin.

Наслідок 1. Визначник n- го порядку дорівнює сумі добутків елементів будь-якого фіксованого стовпчика на їх алгебраїчні доповнення.

Наслідок 2. Сума добутків елементів рядка (стовпчика) визначника на алгебраїчні доповнення іншого рядка (стовпчика) дорівнює 0.

Доведення. Доведемо твердження для рядків визначника. Нехай

Доведемо, що aj1Ai1+ aj2Ai2+…+ ajnAin=0.. Розглянемо допоміжний визначник

     

Зрозуміло, що Δ1=0 як визначник з двома рівними рядками. Розкладаємо цей визначник за елементами i- го рядка. Алгебраїчні доповнення цих елементів співпадають з алгебраїчним доповненням відповідних елементів i- го рядка. А тому 0= Δ1= aj1Ai1+ aj2Ai2+…+ ajnAin.

Доведення твердження для стовпчиків можна одержати транспонуванням визначника і використанням доведеного твердження для рядків транспонованого визначника.


 

А также другие работы, которые могут Вас заинтересовать

59829. Весна на пташиних крилах 46.5 KB
  Мета: Пізнавальний розвиток: продовжувати формувати уявлення дітей про життя птахів комах тварин їх ознакиповедінка зовнішній вигляд вчити встановлювати причинно-наслідкові зв’язки в природі прищеплювати любов до природи...
59830. Свято зустрічі весни. Виховний захід 3 клас 52.5 KB
  Синичка дівчинка Ще в нашому лісі сніги лежать та перший струмочок сьогодні продзвенів мені що весна близько. Йде весна йде весна чарівниченька. Учениця Ось весна вже зовсім близько З гір біжить шумить потік...
59831. «ВЕСНЯНА ФАНТАЗІЯ» В. МОЦАРТА 32.5 KB
  Мета: з’ясувати чи можна побачити живописний образ природи через сприйняття музичного твору Весняна фантазія В. Завдання: навчити учнів співвідносити живописні образи з музичними; узагальнити поняття про образність і виразність у музиці...
59833. Вибір цінностей 54 KB
  Візитна картка уроку: Не збирайте собі скарбів на землі де міль і хробацтво нівечить і де підкопують злодії і викрадають. Збирайте собі скарби на небі де ні міль ані хробацтво не нівечить і де злодії не пробивають стін і не викрадають. Бо де твій скарб там буде і твоє серце. Що таке скарб Що маємо на увазі під земними скарбами Що свідчить про те що вони не вічні Скарби на небі – що це Чи піддаються вони таким небезпекам Чому Робота в групах.
59835. Мати берегиня родини 70 KB
  Хто ж його береже Головною берегинею родини завжди була мати її святою називали. Тарас Шевченко писав: У нашім раї на землі Нічого кращого немає Як тая мати молодая З своїм дитяточком малим
59836. Ich ab Geburt bis Abitur 49 KB
  Весь урок ведеться німецькою мовою, що відповідає вимогам міністерства освіти для 11 класу. Мова вчителя чітка, зрозуміла, ключові фрази повторюються для їх кращого розуміння. Темп уроку задовільний для того, щоб діти встигли прочитати, повторити і записати нові слова.
59837. Уведення та редагування тексту. Перевірка правопису 71 KB
  Мета уроку: Навчальна: Вдосконалити основні знання про текстовий редактор Microsoft Word та його можливості навчити вводити та редагувати текст засобами текстового процесора створювати документи за певною структурою...