22920

Поняття підпростору

Доклад

Математика и математический анализ

1 в підпросторі M існують два лінійно незалежні вектори a1 і a2. З іншого боку пара лінійно незалежних векторів утворює базис площини R2. Це означає що будьякий вектор простору лінійно виражається через a1 і a2. 2 в підпросторі M існує лише лінійно незалежна система що складається з одного вектора a.

Украинкский

2013-08-04

47 KB

1 чел.

Поняття підпростору.

Підпростором в просторі Rn називається не порожня підмножина M, для якої виконуються умови:

1)  

2)    

Зрозуміло, що при будь-якому натуральному nв просторі Rn існують дві підмножини,  які задовольняють умовам простору: M1={0} і M2=Rn. Підпростори M1 і M2 будемо називати тривіальними. Підпростір M1={0}  будемо називати нульовим.

Наведемо деякі приклади підпросторів.

  1.  Припустимо n=1. Простір R1 ототожнюється з множиною R всіх дійсних чисел. Як відомо, множина  R ототожнюється з прямою лінією. Покажемо, що в просторі R1 існують лише тривіальні простори.  Якщо підпростір M простору R1 складається лише з θ, то M={0}=M1. Припустимо, що в підпросторі M міститься деякий ненульовий вектор a. За другою умовою підпростору {αa|αєR}≤M.. З іншого боку, вектор a утворює базис прямої. Тому R1={αa|αєR}. Звідси R1M. Оскільки MR1, то M=R1. Отже, підпростір M співпадає з тривіальним простором  M2=R1..
  2.  Припустимоn=2. Простір  R2 ототожнюється з площиною, причому будь-якому базису простору відповідає деяка система координат на площині. В просторі R2 існують нетривіальні підпростори. З другої умови підпростору випливає, що  θ міститься в  будь-якому підпросторі (модна взяти α=0). Нехай L - пряма на площині, що проходить через початок координат θ. Для множини L умови підпростору виконуються. Таким чином , можливі наступні випадки.

1) в підпросторі M існують два лінійно незалежні вектори a1 і a2. Тоді будь-яка їх лінійна комбінація належить M. З іншого боку, пара лінійно незалежних векторів утворює базис площини  R2. Це означає, що будь-який вектор простору  лінійно виражається через a1 і a2. Тому M=R2=M2.

2) в підпросторі   M існує лише лінійно незалежна система , що складається з одного вектора a. Тоді M є прямою, яка проходить через початок координат, і a- спрямовуючий вектор цієї прямої.

3)  M не містить ненульових векторів. Тоді M={θ}=M1.

3. Припустимо n=3. Підпросторами в просторі R3 є тривіальні простори M1 і M2, всі прямі, що проходять через початок координат, і всі площини, що проходять через початок координат.

Нехай M - підпростір. Система векторів a1,a2,…,am є M  називається базисом підпростору M, якщо виконуються умови:

1) вектори   a1,a2,…,am  лінійно незалежні,

2) будь-який вектор підпростору  M  лінійно виражається через a1,a2,…,am.

Доведемо деякі властивості базисів підпросторів.

  1.  В будь-якому ненульовому підпросторі простору Rn існує базис.

Доведення. Якщо M={θ}, то цей підпростір базису не має, оскільки, в ньому немає лінійно незалежних систем векторів. Нехай підпростір M містить ненульові вектори. Фіксуємо деякий ненульовий вектор a1 є M, Один ненульовий вектор утворює лінійно незалежну систему векторів. Якщо всі вектори підпростору  M лінійно виражаються через a1, то за означенням, вектор a1 утворює базис M. В супротивному випадку фіксуємо деякий вектор a2 є M, який не виражається через a1. Зрозуміло, якщо вектор a2 не виражається через a1, то a1 не виражається через a2. Тому система векторів a1,a2 лінійно незалежна.

Якщо всі вектори підпростору M лінійно виражаються через a1 і a2, то за означенням,  вектори a1 і a2 утворюють базис M, інакше фіксуємо вектор a3 є M, який не виражається через a1 і a2. Система векторів a1,a2,a3 лінійно незалежна, оскільки в супротивному випадку існує нетривіальна лінійна комбінація        α1a12a23a3 =θ. Якщо в цій комбінації α3≠0,  то вектор a3 можна виразити через a1  і  a2, що суперечить вибору a3, а якщо α3=0, то одержуємо нетривіальну лінійну комбінацію векторів   a1 і  a2, що суперечить їх лінійній незалежності. Знову, якщо всі вектори підпростору M лінійно виражаються  через a1,a2,a3, то система a1,a2,a3 утворює базис простору M, інакше фіксуємо вектор a1 є M, який не виражається через a1,a2,a3. Оскільки в просторі Rn не існує лінійно незалежних систем з числом векторів, більшим n, то виконуючи цей процес далі, за k кроків при  приходимо до базису простору M.

  1.  Всі базиси даного ненульового підпростору M простору Rn складаються з однакового числа векторів.

Доведення. Припустимо, системи векторів a1,a2,…,ak і b1,b2,…,bm  утворюють базиси підпростору M і km. Для визначеності нехай k>m. За умовами базису  всі вектори підпростору M лінійно виражаються  через b1,b2,…,bm. Звідси всі вектори системи a1,a2,…,ak  можна виразити через систему b1,b2,…,bm. За припущенням, k>m. Тоді, за лемою про дві системи, вектори a1,a2,…,ak  лінійно залежні, що суперечить означенню базису.

Остання властивість забезпечує коректність наступного означення.

Означення. Розмірністю підпростору M простору Rn називається число векторів в його базисі. Розмірність підпростору  M позначається як dim M.

Оскільки в підпросторі M1={0}  базису немає, то вважаємо, що dim{0}=0.


 

А также другие работы, которые могут Вас заинтересовать

15350. Муниципальная слуба 192 KB
  Изучить положения действующего законодательства о муниципальной службе в России. Ознакомиться с научными трудами, посвящёнными муниципальной службе. Проследить основные тенденции в развитии данного института в России. Дать оценку всей проанализированной в работе информации, сделать на её основе адекватные выводы.
15351. Анализ системы управления на предприятии ООО Конкорд 252 KB
  В этой работе представлены материалы, дающие представление и возможность для анализа системы управления организации «Конкорд». Цель работы - провести анализ существующей на предприятии системы управления, оценить её сильные и слабые стороны
15352. АНАЛИЗ ФИНАНСОВОГО СОСТОЯНИЯ ООО XYZ 1.13 MB
  Основой для проведения финансового анализа ООО XYZ стала следующая информация финансовой (бухгалтерской) отчетности...
15353. Аудит финансовых вложений 235 KB
  Содержание Введение 1. Цели и задачи аудита финансовых вложений 2. Основные законодательные и нормативные документы регулирующие объект проверки и источники информации для проверки финансовых вложений 4. План и программа аудиторской проверки учета финансовых вл...
15354. Аудиторские риски 123.5 KB
  Цель, задачи и предмет курсовой работы это - аудиторская деятельность – особая, самостоятельная форма контроля и представляет собой независимую экспертизу и анализ финансовой отчетности...
15355. Валютный контроль и нормы валютного законодательства 192 KB
  Валютный контроль: понятие цели нормативное закрепление. Проблемы валютного регулирования Виды валютного контроля Система органов валютного контроля Глава 2. Основные нормы валютного законодательс
15356. Влияние современной игрушки на развитие личности ребенка 224 KB
  Влияние современной игрушки на развитие личности ребёнка Содержание Введение 1. Возникновение и историческое развитие игрушки Игрушка элемент культуры Народная игрушка Современ...
15357. Изучение возникновения, развития и разрешения конфликта Галактика-Плюс 186.5 KB
  Целью данной работы является изучение возникновения, развития и разрешения конфликта при помощи системного подхода и анализа на примере частного предприятия «Галактика-Пресс».
15358. Исследование системы управления на предприятии ООО Весна 198.5 KB
  В работе сделана попытка анализа системы управление организацией, рассмотрен алгоритм её построения. На основе теоретических знаний проведён анализ структуры управления ООО «ВЕСНА-К», сделаны предложения по совершенствованию системы менеджмента.