22920

Поняття підпростору

Доклад

Математика и математический анализ

1 в підпросторі M існують два лінійно незалежні вектори a1 і a2. З іншого боку пара лінійно незалежних векторів утворює базис площини R2. Це означає що будьякий вектор простору лінійно виражається через a1 і a2. 2 в підпросторі M існує лише лінійно незалежна система що складається з одного вектора a.

Украинкский

2013-08-04

47 KB

1 чел.

Поняття підпростору.

Підпростором в просторі Rn називається не порожня підмножина M, для якої виконуються умови:

1)  

2)    

Зрозуміло, що при будь-якому натуральному nв просторі Rn існують дві підмножини,  які задовольняють умовам простору: M1={0} і M2=Rn. Підпростори M1 і M2 будемо називати тривіальними. Підпростір M1={0}  будемо називати нульовим.

Наведемо деякі приклади підпросторів.

  1.  Припустимо n=1. Простір R1 ототожнюється з множиною R всіх дійсних чисел. Як відомо, множина  R ототожнюється з прямою лінією. Покажемо, що в просторі R1 існують лише тривіальні простори.  Якщо підпростір M простору R1 складається лише з θ, то M={0}=M1. Припустимо, що в підпросторі M міститься деякий ненульовий вектор a. За другою умовою підпростору {αa|αєR}≤M.. З іншого боку, вектор a утворює базис прямої. Тому R1={αa|αєR}. Звідси R1M. Оскільки MR1, то M=R1. Отже, підпростір M співпадає з тривіальним простором  M2=R1..
  2.  Припустимоn=2. Простір  R2 ототожнюється з площиною, причому будь-якому базису простору відповідає деяка система координат на площині. В просторі R2 існують нетривіальні підпростори. З другої умови підпростору випливає, що  θ міститься в  будь-якому підпросторі (модна взяти α=0). Нехай L - пряма на площині, що проходить через початок координат θ. Для множини L умови підпростору виконуються. Таким чином , можливі наступні випадки.

1) в підпросторі M існують два лінійно незалежні вектори a1 і a2. Тоді будь-яка їх лінійна комбінація належить M. З іншого боку, пара лінійно незалежних векторів утворює базис площини  R2. Це означає, що будь-який вектор простору  лінійно виражається через a1 і a2. Тому M=R2=M2.

2) в підпросторі   M існує лише лінійно незалежна система , що складається з одного вектора a. Тоді M є прямою, яка проходить через початок координат, і a- спрямовуючий вектор цієї прямої.

3)  M не містить ненульових векторів. Тоді M={θ}=M1.

3. Припустимо n=3. Підпросторами в просторі R3 є тривіальні простори M1 і M2, всі прямі, що проходять через початок координат, і всі площини, що проходять через початок координат.

Нехай M - підпростір. Система векторів a1,a2,…,am є M  називається базисом підпростору M, якщо виконуються умови:

1) вектори   a1,a2,…,am  лінійно незалежні,

2) будь-який вектор підпростору  M  лінійно виражається через a1,a2,…,am.

Доведемо деякі властивості базисів підпросторів.

  1.  В будь-якому ненульовому підпросторі простору Rn існує базис.

Доведення. Якщо M={θ}, то цей підпростір базису не має, оскільки, в ньому немає лінійно незалежних систем векторів. Нехай підпростір M містить ненульові вектори. Фіксуємо деякий ненульовий вектор a1 є M, Один ненульовий вектор утворює лінійно незалежну систему векторів. Якщо всі вектори підпростору  M лінійно виражаються через a1, то за означенням, вектор a1 утворює базис M. В супротивному випадку фіксуємо деякий вектор a2 є M, який не виражається через a1. Зрозуміло, якщо вектор a2 не виражається через a1, то a1 не виражається через a2. Тому система векторів a1,a2 лінійно незалежна.

Якщо всі вектори підпростору M лінійно виражаються через a1 і a2, то за означенням,  вектори a1 і a2 утворюють базис M, інакше фіксуємо вектор a3 є M, який не виражається через a1 і a2. Система векторів a1,a2,a3 лінійно незалежна, оскільки в супротивному випадку існує нетривіальна лінійна комбінація        α1a12a23a3 =θ. Якщо в цій комбінації α3≠0,  то вектор a3 можна виразити через a1  і  a2, що суперечить вибору a3, а якщо α3=0, то одержуємо нетривіальну лінійну комбінацію векторів   a1 і  a2, що суперечить їх лінійній незалежності. Знову, якщо всі вектори підпростору M лінійно виражаються  через a1,a2,a3, то система a1,a2,a3 утворює базис простору M, інакше фіксуємо вектор a1 є M, який не виражається через a1,a2,a3. Оскільки в просторі Rn не існує лінійно незалежних систем з числом векторів, більшим n, то виконуючи цей процес далі, за k кроків при  приходимо до базису простору M.

  1.  Всі базиси даного ненульового підпростору M простору Rn складаються з однакового числа векторів.

Доведення. Припустимо, системи векторів a1,a2,…,ak і b1,b2,…,bm  утворюють базиси підпростору M і km. Для визначеності нехай k>m. За умовами базису  всі вектори підпростору M лінійно виражаються  через b1,b2,…,bm. Звідси всі вектори системи a1,a2,…,ak  можна виразити через систему b1,b2,…,bm. За припущенням, k>m. Тоді, за лемою про дві системи, вектори a1,a2,…,ak  лінійно залежні, що суперечить означенню базису.

Остання властивість забезпечує коректність наступного означення.

Означення. Розмірністю підпростору M простору Rn називається число векторів в його базисі. Розмірність підпростору  M позначається як dim M.

Оскільки в підпросторі M1={0}  базису немає, то вважаємо, що dim{0}=0.


 

А также другие работы, которые могут Вас заинтересовать

9922. Процедурный уровень информационной безопасности 84.5 KB
  Процедурный уровень информационной безопасности Описываются основные классы мер процедурного уровня. Формулируются принципы, позволяющие обеспечить надежную защиту. Основные классы мер процедурного уровня Мы приступаем к рассмотрению мер безопасност...
9923. Основные программно-технические меры 67 KB
  Основные программно-технические меры Вводится понятие сервиса безопасности. Рассматриваются вопросы архитектурной безопасности, предлагается классификация сервисов. Основные понятия программно-технического уровня информационной безопасности Программ...
9924. Идентификация и аутентификация, управление доступом 141.5 KB
  Идентификация и аутентификация, управление доступом В данной лекции кратко описываются традиционные сервисы безопасности - идентификация и аутентификация, управление доступом. Сервисы безопасности мы будем рассматривать применительно к распреде...
9925. Антивирусная защита информационных технологий 165 KB
  Антивирусная защита информационных технологий Основные угрозы информационной безопасности. Классификация вредоносных программ. Принципы функционирования современной антивирусной защиты, типы и разновидности антивирусных средств. Вряд ли стоит напоми...
9926. Экранирование, анализ защищенности 86 KB
  Экранирование, анализ защищенности Рассматриваются сравнительно новые (развивающиеся с начала 1990-х годов) сервисы безопасности - экранирование и анализ защищенности. Экранирование Основные понятия Формальная постановка задачи экранирования, с...
9927. Обеспечение высокой доступности 90 KB
  Обеспечение высокой доступности Рассматриваются два вида средств поддержания высокой доступности: обеспечение отказоустойчивости (нейтрализация отказов, живучесть) и обеспечение безопасного и быстрого восстановления после отказов (обслуживаемость). ...
9928. Протоколирование и аудит, шифрование, контроль целостности 109.5 KB
  Протоколирование и аудит, шифрование, контроль целостности Описываются протоколирование и аудит, а также криптографические методы защиты. Показывается их место в общей архитектуре безопасности. Протоколирование и аудит Основные понятия Под протоколи...
9929. Криптографические основы безопасности. Основные понятия и определения 142.5 KB
  Криптографические основы безопасности Введение: Даются основные понятия и определения, относящиеся к информационной безопасности: атаки, уязвимости, политика безопасности, механизмы и сервисы безопасности приводится классификация атак рассматриваю...
9930. Сохранность и защита программных систем 6.23 MB
  Сохранность и защита программных систем Цели защиты информации. Теоретические основы компьютерной безопасности. Требования, предъявляемые к обеспечению безопасности информационных технологий. Организационно-правовое обеспечение информационной...