22921

Однорідні системи лінійних рівнянь

Доклад

Математика и математический анализ

Будемо розглядати однорідну систему лінійних рівнянь з змінними 1 Зрозуміло що така система рівнянь сумісна оскільки існує ненульовий розв’язок x1=0 x2=0xn=0. Цей розв’язок будемо називати тривіальним. Можна зробити висновок що якщо однорідна система лінійних рівнянь має єдиний розв’язок то цей розв’язок тривіальний. Однорідна система лінійних рівнянь має нетривіальний розв’язок тоді і тільки тоді коли її ранг менше числа невідомих.

Украинкский

2013-08-04

49 KB

2 чел.

Однорідні системи лінійних рівнянь.

Система лінійних рівнянь називається однорідною, якщо вільні члени всіх рівнянь системи дорівнюють нулю.

Будемо розглядати однорідну систему лінійних рівнянь з  змінними

------------------------------                   (1)

Зрозуміло, що така система рівнянь сумісна, оскільки існує ненульовий розв’язок  x1=0, x2=0,…,xn=0. Цей розв’язок будемо називати тривіальним.

Можна зробити висновок, що якщо однорідна система лінійних рівнянь має єдиний розв’язок, то цей розв’язок тривіальний. З теорії загальних систем лінійних рівнянь випливають наступні твердження для однорідних систем.

Однорідна система лінійних рівнянь має нетривіальний розв’язок тоді і тільки тоді, коли її ранг менше числа невідомих.

Лема. Множина всіх розв’язків однорідної системи лінійних рівнянь (1) утворює підпростір в просторі Rn .

Доведення. Позначимо через M множину всіх розв’язків системи (1). Оскільки, система (1) має тривіальний розв’язок, то θ є M, а тому M≠Ø. Перевіримо виконання умов підпростору.

  1.  нехай a і b - два розв’язки системи (1);  a=(λ12,…,λn), b=(γ12,…,γn). Доведемо, що a+b=(λ11, λ22,…, λnn) є M.. Для цього підставимо координати вектора a+b в     i-те рівняння системи  (1≤im).   і є розв’язками системи , то

Звідси

Отже, координати вектора a+b є розв’язком i - го рівняння системи (). Тому    a+b є M.

  1.  нехай );  a=(λ1,λ2,…,λn), є розвязком системи (1), β є R - деяке число. Доведемо, що вектор βa=(βλ1,βλ2,…,βλn) є розвязком системи (1). Підставимо координати вектора βa в i-е рівняння системи. Оскільки aє M, то

.

Звідси

.

Отже, координати вектора βa є розв’язком i - го  рівняння системи (). Тому        βa є M., тобто умови підпростору виконуються. Лему доведено.

Вірне й твердження, що є оберненим для твердження леми: кожний підпростір простору Rn є множиною всіх розв’язків деякої однорідної системи лінійних рівнянь з n змінними.


 

А также другие работы, которые могут Вас заинтересовать

73587. Уточнение кристаллической и магнитной структур с помощью программы FULLPROF 866.5 KB
  Выбор фона на дифракционной картине: фиксированный и уточняемый. Расчет до 16 различных фаз. Учет текстуры, поправка на поглощение падающего излучения. Расчет кристаллической структуры. Расчет магнитной структуры: соизмеримой и несоизмеримой.
73589. Симметрийный анализ магнитных стуктур 303.5 KB
  Для описания и классификации магнитной структуры возможны два способа. Один из них – это путь магнитной симметрии, другой – применение теории представлений групп. Магнитная структура может быть описана псевдовекторной функцией
73591. Эколого-экономический мониторинг окружающей среды 1.36 MB
  Понятие эколого-экономического мониторинга окружающей среды. Нормативно-правовая база организации системы государственного управления природопользованием и охраной окружающей среды в Российской Федерации Международные соглашения в области охраны окружающей среды.
73592. Наука, як система знань і уявлень 62 KB
  Надати загальні відомості про науку як система знань і уявлень про сутність науки. Можна сперечатися про найважливіші принципи чи наявні результати науки але ніхто не наважиться заперечити її роль. До науки можна застосувати слова Архімеда прибл. Тому при визначенні науки необхідно звертати увагу насамперед на стійке в ній тобто не на конкретні характерні для її історичного стану судження знання а на вічні особливості пізнавальної процедури.
73593. Ядерное рассеяние нейтронов 953.5 KB
  При рассмотрении рассеяния медленных нейтронов в веществе в условиях, далеких от резонансного захвата их атомными ядрами, обычно исходят из борновского приближения, соответствующему первому теории возмущений.