22922

Поняття фундаментальної (базисної) системи розв’язків

Доклад

Математика и математический анализ

Як показано вище множина M всіх розвязків однорідної системи лінійних рівнянь утворює підпростір. Фундаментальною базисною системою розвязків однорідної системи лінійних рівнянь називається базис підпростору всіх її розвязків. Теорема про фундаментальну систему розвязків.

Украинкский

2013-08-04

55.5 KB

1 чел.

Поняття фундаментальної (базисної) системи розв’язків.

Як показано вище, множина M всіх розв’язків однорідної системи лінійних рівнянь утворює підпростір.

Фундаментальною (базисною) системою розв’язків однорідної системи лінійних рівнянь називається базис підпростору всіх її розв’язків.

Теорема (про фундаментальну систему розв’язків). Нехай дана однорідна система лінійних рівнянь рангу r з n змінними. Тоді її фундаментальна система розв’язків складається з n-r розв’язків.

Іншими словами, розмірність підпростору всіх розв’язків системи дорівнює  n-r.

Доведення. Припустимо, що ранг однорідної системи лінійних рівнянь (1) дорівнює r. Множину всіх її розв’язків позначимо через M. Якщо r=n, то система має лише тривіальний розв’язок. Тоді M={θ}; n-r=0=dim{θ}=dim M, і твердження теореми виконується. Тому будемо вважати, що r<n. Складемо основну матрицю системи.

.

За означенням рангу системи, ранг матриці A дорівнює r. Це означає, що базисний мінор матриці Δr має порядок r, Δr ≠0,  а всі мінори в матриці порядку r+1, якщо вони існують, дорівнюють нулю. Можна вважати, що мінор Δr  будується на перших r рядках і r стовпчиках матриці. Інакше можна переставити рівняння системи і перенумерувати  змінні. Тоді, за теоремою про базисний мінор, r  перших рядків матриці A лінійно незалежні, решта рядків через них лінійно виражається. Це означає, що r перших рівнянь в системі (1) лінійно незалежні. Решта рівнянь лінійно виражається через перші  r рівнянь, тобто є їх наслідками. Рівняння-наслідки можна відкинути, при цьому перейдемо до еквівалентної системи

-------------------------------------------------------

Цю систему можна записати таким чином

     (2)

---------------------------------------------------------------

Оскільки базисний мінор Δr  матриці  A будується на перших r стовпчиках, то в системі (2) змінні x1,x2,…,xr  базисні, а змінні xr+1,xr+2,…,xn вільні . Якщо замість вільних змінних підставити будь-який фіксований набір чисел, то система (2) перетворюється на систему лінійних рівнянь відносно базисних змінних, причому ця система квадратна, а її головний визначник співпадає з мінором Δr, а тому не дорівнює нулю. Отже, система рівнянь відносно базисних змінних, за теоремою Крамера, має єдиний розв’язок.

Спочатку підставляємо xr+1=1,,xr+2=0,…,xn=0 і одержуємо розв’язок системи (2) відносно базисних змінних, який визначає розв’язок системи рівнянь (1)                 a1=(γ11, γ12 ,…, γ1r,1,0,…,0). Далі підставляємо xr+1=0,,xr+2=1,…,xn=0. Розв’язуємо систему відносно базисних змінних і одержуємо розв’язок системи (1)                    a2=(γ21, γ22 ,…, γ2r,0,1,…,0). Оскільки кількість вільних змінних дорівнює n-r, то можна зробити  n-r таких кроків. На останньому кроці одержимо розвязок системи рівнянь  (1) an-r=(γn-r,1, γn-r,2 ,…, γn-r,r,0,0,…,1).. Покажемо, що вектори a1,a2,…,an-r утворюють базис підпростору M розв’язків системи (1). Для цього перевіримо виконання двох умов базису.

  1.  доведемо лінійну незалежність розв’язків a1,a2,…,an-r. Беремо лінійну комбінацію

λ1a12a2+…+λn-ran-r=

Вектор в лівій частині має координати12,…,βr12,…,λn-r). Отже12,…,βr12,…,λn-r)==.

 Звідси λ1=0, λ2=0,…,λn-r=0, лінійна комбінація тривіальна, і розв’язки лінійно незалежні .

  1.  покажемо, що всі  розв’язки  однорідної системи (1) лінійно виражаються через  a1,a2,…,an-r. При доведенні скористаємось таким фактором: якщо у двох розв’язків системи (1) координати починаючи з (r+1)- ї і до n- ї  співпадають, то ці розв’язки рівні. Цей факт випливає з того, що при фіксованих значеннях вільних змінних xr+1,xr+2,…,xn система (2) відносно базисних змінних має єдиний розв’язок, тобто перші r координат розв’язку системи (1) визначається однозначно .

Візьмемо довільний розв’язок системи (1) a=(β12,…,βrr+1r+2,…,βn). Нехай також b=βr+1a1r+2a2+…+βnan-r. Зрозуміло, що  b є M, тобто вектор b є розвязком  системи рівнянь (1). У розвязків a і b координати починаючи з (r+1) - ї і до n- ї   співпадають. Це означає, що a=b= βr+1a1r+2a2+…+βnan-r.

Умови базису виконуються, теорему доведено.

Наслідок. Нехай дана однорідна система лінійних рівнянь з n змінними рангу r. Тоді будь-які n-r лінійно незалежних  розв’язків системи утворюють її фундаментальну систему розв’язків.

Доведення. Нехай a1,a2,…,an-r - лінійно незалежна система розв’язків однорідної системи, а b1,b2,…,bn-r - її фундаментальна система розв’язків.

За означенням достатньо показати, що будь-який розв’зок x системи лінійно виражається через a1,a2,…,an-r. Оскільки вектори b1,b2,…,bn-r утворюють фундаментальну систему розв’зків, то всі вектори в системі  a1,a2,…,an-r,x лінійно виражається через b1,b2,…,bn-r. За лемою про дві системи, звідси система розв’зків a1,a2,…,an-r,x  лінійно залежна, тобто існує нетривіальна лінійна комбінація

λ1a12a2+…+λn-ran-r+γx=

Якщо γ=0, то одержуємо нетривіальну лінійну комбінацію векторів a1,a2,…,an-r, що суперечить їх лінійній незалежності . Отже, γ≠0 і . Таким чином розв’язок x лінійно виражається через a1,a2,…,an-r, звідси випливає твердження .


 

А также другие работы, которые могут Вас заинтересовать

21772. Условный оператор if и оператор выбора switch 785.71 KB
  Задача лабораторной работы состоит в практическом освоении оператора условия и выбора, совмещения их с функциями ввода и вывода, математическими функциями в одном приложении, написание приложения по индивидуальному варианту.
21773. Система охранной сигнализации на базе оборудования «Болид» 850.38 KB
  Изучение системы охранной сигнализации на базе оборудования «Болид». Настройка тактики работы системы охранной сигнализации при помощи программы «Pprog»
21774. Разработка раздела «Фотогалерея» и создания модуля просмотра фотографий 1.31 MB
  А также добавили два новых раздела в «меню». Остался пустым раздел «Фотогалерея», состоящий из трех подразделов. Приоритетной задачей при разработке данного раздела является создание понятного интерфейса для пользователя, то есть необходимо объекты на страницы расставить таким образом
21775. Изучение системы Орион Про на базе оборудования «Болид». Настройка уровней доступа для охранно-пожарной системы при помощи программы «Pprog» 2.05 MB
  Oбследование это изучение и диагностический анализ организационной структуры предприятия его деятельности и существующей системы обработки информации. Этап предполагает тесное взаимодействие с основными потенциальными пользователями системы и бизнесэкспертами. По завершении этой стадии обследования появляется возможность определить вероятные технические подходы к созданию системы и оценить затраты на ее реализацию затраты на аппаратное обеспечение закупаемое программное обеспечение и разработку нового программного обеспечения ....
21776. Основы работы в MathCAD 186.6 KB
  Mathcad является математическим редактором, позволяющим проводить разнообразные научные и инженерные расчеты, начиная от элементарной арифметики заканчивая сложными реализациями численных методов.
21777. Разработка базы данных «Видеотека» средствами СУБД MS Access 541.5 KB
  В данной работе будут созданы запросы (результирующие таблицы), подчиненные формы на основе таблиц для ввода, редактирования и отображения данных.
21779. Исследование спектральных характеристик систем с ШИМ c выходом по пстоянному току 548.5 KB
  Задачей работы является приобретение навыков расчета силового фильтра в схеме предложенного преобразователя, анализ спектральных характеристик широтно-импульсной модуляции (ШИМ), а также обработки результатов эксперимента.
21780. Деньги и кредитные отношения, краткий курс лекций 92 KB
  Деньги в функции средства обращения – представлены в качестве средства оплаты товаров и услуг, а также средства погашения различных долговых обязательств.