22922

Поняття фундаментальної (базисної) системи розв’язків

Доклад

Математика и математический анализ

Як показано вище множина M всіх розв’язків однорідної системи лінійних рівнянь утворює підпростір. Фундаментальною базисною системою розв’язків однорідної системи лінійних рівнянь називається базис підпростору всіх її розв’язків. Теорема про фундаментальну систему розв’язків.

Украинкский

2013-08-04

55.5 KB

1 чел.

Поняття фундаментальної (базисної) системи розв’язків.

Як показано вище, множина M всіх розв’язків однорідної системи лінійних рівнянь утворює підпростір.

Фундаментальною (базисною) системою розв’язків однорідної системи лінійних рівнянь називається базис підпростору всіх її розв’язків.

Теорема (про фундаментальну систему розв’язків). Нехай дана однорідна система лінійних рівнянь рангу r з n змінними. Тоді її фундаментальна система розв’язків складається з n-r розв’язків.

Іншими словами, розмірність підпростору всіх розв’язків системи дорівнює  n-r.

Доведення. Припустимо, що ранг однорідної системи лінійних рівнянь (1) дорівнює r. Множину всіх її розв’язків позначимо через M. Якщо r=n, то система має лише тривіальний розв’язок. Тоді M={θ}; n-r=0=dim{θ}=dim M, і твердження теореми виконується. Тому будемо вважати, що r<n. Складемо основну матрицю системи.

.

За означенням рангу системи, ранг матриці A дорівнює r. Це означає, що базисний мінор матриці Δr має порядок r, Δr ≠0,  а всі мінори в матриці порядку r+1, якщо вони існують, дорівнюють нулю. Можна вважати, що мінор Δr  будується на перших r рядках і r стовпчиках матриці. Інакше можна переставити рівняння системи і перенумерувати  змінні. Тоді, за теоремою про базисний мінор, r  перших рядків матриці A лінійно незалежні, решта рядків через них лінійно виражається. Це означає, що r перших рівнянь в системі (1) лінійно незалежні. Решта рівнянь лінійно виражається через перші  r рівнянь, тобто є їх наслідками. Рівняння-наслідки можна відкинути, при цьому перейдемо до еквівалентної системи

-------------------------------------------------------

Цю систему можна записати таким чином

     (2)

---------------------------------------------------------------

Оскільки базисний мінор Δr  матриці  A будується на перших r стовпчиках, то в системі (2) змінні x1,x2,…,xr  базисні, а змінні xr+1,xr+2,…,xn вільні . Якщо замість вільних змінних підставити будь-який фіксований набір чисел, то система (2) перетворюється на систему лінійних рівнянь відносно базисних змінних, причому ця система квадратна, а її головний визначник співпадає з мінором Δr, а тому не дорівнює нулю. Отже, система рівнянь відносно базисних змінних, за теоремою Крамера, має єдиний розв’язок.

Спочатку підставляємо xr+1=1,,xr+2=0,…,xn=0 і одержуємо розв’язок системи (2) відносно базисних змінних, який визначає розв’язок системи рівнянь (1)                 a1=(γ11, γ12 ,…, γ1r,1,0,…,0). Далі підставляємо xr+1=0,,xr+2=1,…,xn=0. Розв’язуємо систему відносно базисних змінних і одержуємо розв’язок системи (1)                    a2=(γ21, γ22 ,…, γ2r,0,1,…,0). Оскільки кількість вільних змінних дорівнює n-r, то можна зробити  n-r таких кроків. На останньому кроці одержимо розвязок системи рівнянь  (1) an-r=(γn-r,1, γn-r,2 ,…, γn-r,r,0,0,…,1).. Покажемо, що вектори a1,a2,…,an-r утворюють базис підпростору M розв’язків системи (1). Для цього перевіримо виконання двох умов базису.

  1.  доведемо лінійну незалежність розв’язків a1,a2,…,an-r. Беремо лінійну комбінацію

λ1a12a2+…+λn-ran-r=

Вектор в лівій частині має координати12,…,βr12,…,λn-r). Отже12,…,βr12,…,λn-r)==.

 Звідси λ1=0, λ2=0,…,λn-r=0, лінійна комбінація тривіальна, і розв’язки лінійно незалежні .

  1.  покажемо, що всі  розв’язки  однорідної системи (1) лінійно виражаються через  a1,a2,…,an-r. При доведенні скористаємось таким фактором: якщо у двох розв’язків системи (1) координати починаючи з (r+1)- ї і до n- ї  співпадають, то ці розв’язки рівні. Цей факт випливає з того, що при фіксованих значеннях вільних змінних xr+1,xr+2,…,xn система (2) відносно базисних змінних має єдиний розв’язок, тобто перші r координат розв’язку системи (1) визначається однозначно .

Візьмемо довільний розв’язок системи (1) a=(β12,…,βrr+1r+2,…,βn). Нехай також b=βr+1a1r+2a2+…+βnan-r. Зрозуміло, що  b є M, тобто вектор b є розвязком  системи рівнянь (1). У розвязків a і b координати починаючи з (r+1) - ї і до n- ї   співпадають. Це означає, що a=b= βr+1a1r+2a2+…+βnan-r.

Умови базису виконуються, теорему доведено.

Наслідок. Нехай дана однорідна система лінійних рівнянь з n змінними рангу r. Тоді будь-які n-r лінійно незалежних  розв’язків системи утворюють її фундаментальну систему розв’язків.

Доведення. Нехай a1,a2,…,an-r - лінійно незалежна система розв’язків однорідної системи, а b1,b2,…,bn-r - її фундаментальна система розв’язків.

За означенням достатньо показати, що будь-який розв’зок x системи лінійно виражається через a1,a2,…,an-r. Оскільки вектори b1,b2,…,bn-r утворюють фундаментальну систему розв’зків, то всі вектори в системі  a1,a2,…,an-r,x лінійно виражається через b1,b2,…,bn-r. За лемою про дві системи, звідси система розв’зків a1,a2,…,an-r,x  лінійно залежна, тобто існує нетривіальна лінійна комбінація

λ1a12a2+…+λn-ran-r+γx=

Якщо γ=0, то одержуємо нетривіальну лінійну комбінацію векторів a1,a2,…,an-r, що суперечить їх лінійній незалежності . Отже, γ≠0 і . Таким чином розв’язок x лінійно виражається через a1,a2,…,an-r, звідси випливає твердження .


 

А также другие работы, которые могут Вас заинтересовать

81164. Школа научного управления: Ф. Тейлор, А. Файоль, Г. Форд, Г. Эмерсон 38.83 KB
  Его система научной организации труда включала в себя ряд основных положений: научные основания производства научный подбор кадров обучение и тренировка организация взаимодействия между управляющими и рабочими. В социологии труда он изучал вопросы рестрикционизма группового взаимодействия и групповой динамики а также отношение к труду стимулирование мотивацию и организацию труда. Система Тейлора заложила основы научной организации труда через создание многочисленных правил законов и формул которые заменяют личное суждение работника и...
81165. Школа «человеческих отношений»: М. Фоллет, Э. Мэйо, Л. Урвик, К. Левин 40.51 KB
  Основные направления деятельности школы: применение наук об управлении человеческим поведением; разработка систем мотивации труда. Основное содержание доктрины человеческих отношений можно выразить следующими тезисами: человек социальное животное Мейо ввел понятие социальный человек; жесткая иерархия подчиненность формализация организационных процессов несовместимы с его природой; производительность труда зависит не только и не столько от методов организации производства сколько от того как управляющие относятся к...
81166. Бюрократическая модель управления (М. Вебер) 42.07 KB
  Вебер. Максимилиан Карл Эмиль Вебер Mximilin Crl Emil Weber родился 21го апреля 1864го в Эрфурте в Тюрингии Erfurt Thuringi. Старший из семи детей Макса Веберастаршего богатого и известного политика из Националлиберальной партии Германии и Хелен Фалленштайн Helene Fllenstein протестантки и кальвинистки. В доме Веберов собирались видные ученые и политики и молодой Вебер как и его брат Альфред lfred также ставший социологом и экономистом процветал в такой интеллектуальной атмосфере.
81167. Достоинства и недостатки теории рациональной бюрократии 35.68 KB
  Негативные стороны бюрократии.Вебер полагает что чем ближе организация к идеальному типу бюрократии тем более эффективно она будет справляться с задачами для решения которых была создана. Он часто сравнивал бюрократии со сложными механизмами.
81168. Человек - иерархия потребностей (А. Маслоу, Ф. Херцберг, Э. Гомерсол) 77.33 KB
  Все человеческие потребности он разделял на пять групп и назвал их базовыми потребностями. Физиологические потребности которые являются необходимыми для жизни и существования. Они включают потребности в еде питье убежище отдыхе и сексуальные потребности. Сам автор пишет об этом следующее: За отправную точку при создании мотивационной теории обычно принимаются специфические потребности которые принято называть физиологическими позывами.
81169. Процессуальные теории мотивации 32.09 KB
  Вознаграждение все что человек считает ценным для себя. Внутреннее вознаграждение дает сама работа внешнее дает начальник. Результат вознаграждение. ценность удовлетворенность вознаграждением так как предпочтения у различных людей различны.
81170. Теория стилей руководства Р. Лайкерта 91.67 KB
  Ренсис Лайкерт 1903 1981 разработал собственную теорию стилей руководства. С помощью опроса лидеров и их подчиненных было выявлено два стиля руководства: руководство ориентированное на выполнение задачи и руководство ориентированное на взаимоотношения со служащими подбор кадров и работу с ними. в продолжение своих исследований Лайкерт обобщил реальные методы управления и предложил четыре базовых стиля руководства.
81171. Теория управленческих решений А. Пригожина 35.5 KB
  Обладая собственной логикой функционирования объект управления приобретает не только значительный запас инерционности но и способность задерживать и искажать исполнение решений принятых наверху. Однако в развитии отечественной социологии управления все еще налицо так называемый эффект запаздывания. У современной социологии управления в нынешнем хаотичном малопредсказуемом мире мире повышенных рисков цивилизационных экономических политических экологических как науки изучающей более широкую в сравнении с менеджментом проблематику...
81172. Прикладное социологическое исследование в сфере социального управления 38.95 KB
  Фундаментальные исследования ориентированы на разработку теорий выявление социальных тенденций развития системы анализ общих противоречий возникающих в ней. Прикладные исследования направлены на изучение конкретных социальных проблем связанных с решением практических задач регулированием меж групповых и внутригрупповых отношений и социальных процессов. ее репрезентативность; – метода...