2298

Математична обробка даних експерименту. Парна регресія

Лекция

Математика и математический анализ

Постановка задачі. Парна регресія. Лінійна парна регресія. Лінеаризація деяких видів двопараметричних зв’язків. Метод найменших квадратів (МНК). Алгоритм МНК. Приклад розв’язування задачі в середовищі системи Mathcad.

Украинкский

2013-01-06

74.68 KB

71 чел.

Лекція 13. Математична обробка даних експерименту. Парна регресія

План

1. Постановка задачі. Парна регресія.

2. Лінійна парна регресія.

3. Лінеаризація деяких видів двопараметричних зв’язків.

4. Метод найменших квадратів (МНК).

5. Алгоритм МНК.

6. Приклад розв’язування задачі в середовищі системи Mathcad.

1. Постановка задачі. Парна регресія

В практичній діяльності при проведенні досліджень виникає необхідність в математичній обробці результатів експерименту. Для цього використовують кореляційний та регресійний аналіз.

Кореляція (співвідношення, відповідність) – залежність між явищами або величинами, що не мають чіткого функціонального зв’язку.

Регресія (повернення) – ймовірнісна залежність середнього значення якоїсь величини від іншої величини.

При застосуванні регресійного аналізу можна використовувати два види регресій:

  1.  парна регресія – характеризує взаємозв’язок двох множин {xi} та {yi}, тобто одному значенню множини {yi} відповідає тільки одне значення множини {xi};
  2.  множинна регресія – характеризує взаємозв’язок більш, ніж двох множин, тобто одному значенню множини {yi} може відповідати два і більше значень множин {xi(k)}.

Розглянемо парну регресійну залежність результатів експерименту (таблиця 1)

 Результати експерименту

      Таблиця 1

X

x1

x2

x3

xn

Y

y1

y2

y3

yn

Нехай змінні множин X та Y зв’язані між собою деякою функціональною залежністю

y=f(a,b,x). (1)

Якщо на координатній площині x0y відкласти точки з координатами (xi, yi), то отримаємо поле розсіювання, яке може дати наочне представлення про силу тісноти зв’язку та його тип (прямолінійний чи криволінійний) між X та Y.

Математична обробка експериментальних даних (таблиця 1) з допомогою кореляційного та регресійного аналізу проводиться за таким алгоритмом:

1) будують поле розсіювання (на координатній площині x0y відкладають точки з координатами (xi, yi) і з’єднують їх ламаною лінією);

2) вибирають емпіричну формулу (1) користуючись виглядом ламаної лінії;

3) при необхідності лінеаризують формулу (1);

4) визначають параметри a і b формули (1);

5) аналізують результати експерименту.

2. Лінійна парна регресія

Найпростішою залежністю між двома послідовностями є лінійна парна регресія. У цьому випадку рівняння регресії матиме вигляд   (2)

Про тісноту зв’язку між множинами X та Y може свідчити коефіцієнт кореляції r, який приймає значення з інтервалу [-1; 1]:

1)  – зв’язок відсутній;

2) – зв’язок слабкий;

3)  – зв’язок середній;

4)  – зв’язок сильний;

5)  – зв’язок повний.

Якщо , то зв’язок між множинами X та Y прямий, тобто при зростанні X зростають Y; якщо , то зв’язок між множинами X та Y обернений, тобто при зростанні X спадають Y.

3. Лінеаризація деяких видів двопараметричних зв’язків

На практиці дуже часто зв’язок між множинами X та Y носить нелінійний (криволінійний) характер. У більшості випадків за допомогою простих перетворень можна звести нелінійну залежність до лінійної, тобто провести лінеаризацію. Наведемо приклади лінеаризації найбільш часто вживаних нелінійних функцій (табл. 2).

         Таблиця 2

з/п

Функція

Лінеаризуючі перетворення

перетворення змінних

вирази для

коефіцієнтів

y=f(a,b,x)

1

2

3

4

5

6

4. Метод найменших квадратів (МНК)

Лінійний парний регресійний аналіз полягає у визначенні параметрів a і b емпіричної лінійної функції (2), яка описує зв’язок між деяким числом N пар значень (xi, yi) і забезпечує найменшу середньоквадратичну похибку.

Графічно цю задачу можна представити так: у полі розсіювання точок (xi, yi) площини x0y необхідно провести пряму так, щоб величина всіх відхилень задовольняла умову

(3)

Тому цей метод регресійного аналізу називається методом найменших квадратів (МНК).

Для знаходження коефіцієнтів a і b рівняння регресії (2) необхідно знайти часткові похідні по a і b від функції (3) і прирівняти їх до нуля:

(4)

Після простих перетворень отримаємо систему нормальних рівнянь

(5)

Коли розв’яжемо систему (5), то отримаємо коефіцієнти a і b рівняння регресії (2).

Зауваження. На практиці коефіцієнти a і b частіше знаходять з використанням коефіцієнтів кореляції та коваріації.

5. Алгоритм МНК

Алгоритм МНК складається з дев’яти етапів:

  1.  знаходимо середні значення масивів X та Y:
  2.  знаходимо середньоквадратичні вибіркові відхилення:

  1.  знаходимо коефіцієнт коваріації:

  1.  знаходимо коефіцієнт кореляції:

  1.  знаходимо коефіцієнти рівняння регресії:

  1.  знаходимо теоретичні значення змінної Y:

  1.  знаходимо середньоквадратичне відхилення між експери-менттальними та теоретичними значеннями змінної Y:

  1.  знаходимо рівняння ліній смуги довір’я:

  1.  знаходимо інтервал смуги довіря:  

6. Приклад розв’язування задачі в середовищі Mathcad

В таблицю занесені дані експерименту:

x

0

1

2

3

4

5

6

y

4.1

2.4

3

4.3

3.6

5.2

5.9

Побудувати апроксимаційний поліном 1-го степеня . Побудувати в одному графічному вікні графіки заданої дискретної функції і графік отриманої функції .

Завдання виконати в середовищі MathCad.

Розв’язання

 Функції MathCad, які використовуються при розрахунках лінійної регресії:

  1.  line(x,y)вектор із двох елементів (b,a) коефіцієнтів рівняння лінійної регресії
  2.  intercept(x,y) – коефіцієнт b рівняння лінійної регресії
  3.  slope(x,y) - коефіцієнт a рівняння лінійної регресії

Тут x –вектор дійсних даних аргументу, y – вектор дійсних даних функції того ж розміру.

В системі MathCad є два дублюючих один одного способи для розрахунку лінійної регресії.

1-й спосіб.

Рівняння лінійної регресії 

має такий вид:

y=0.414x+2.829

2-й спосіб.

Рівняння лінійної регресії 

має такий вид:

y=0.414x+2.829


 

А также другие работы, которые могут Вас заинтересовать

22363. Основной принцип теории пределов 635.5 KB
  Существует одна и только одна точка которая принадлежит всем отрезкам данной последовательности. Следовательно двух точек общих всем отрезкам нашей последовательности существовать не может; существование же одной такой точки доказано в теории иррациональных чисел. Существует единственная точка принадлежащая всем прямоугольникам данной последовательности. Пусть имеется бесконечная последовательность комплексных чисел 1 Число z называется предельным числом последовательности 1 если...
22364. Дробно-линейные отображения 824.5 KB
  Отображение инверсия преобразование симметрии относительно единичной окружности. Вообще точки и называют симметричными относительно окружности : если 1 они лежат на одном луче проходящем через точку 2 Преобразование переводящее каждую точку плоскости в точку симметричную относительно окружности называют симметрией относительно этой окружности или инверсией. Докажем основное свойство симметричных точек: Точки и тогда и только тогда являются симметричными относительно окружности когда они являются вершинами пучка...
22365. Расширенная комплексная плоскость 2.74 MB
  непрерывны функции и то ее графиком является некоторая кривая на комплексной плоскости. Тогда говорят что задана непрерывная кривая или просто кривая: 1 а уравнение 1 называют параметрическим уравнением этой кривой. Пусть кривая задана уравнением 1. вопервых кривая является упорядоченным множеством точек вовторых различным точкам кривой может отвечать одна и та же точка плоскости: если t = t при tt то точки z= t и z=t...
22366. Понятие сходящегося и расходящегося ряда 227.5 KB
  Понятие сходящегося и расходящегося ряда. Рассмотрим бесконечный ряд: 1 все члены ряда – комплексные числа образуем ∑ первых n членов этого ряда: 2 Давая n значения 123 мы получим бесконечную последовательность комплексных чисел S1S2Snсоответствующего ряда 1 . Обратно зная последовательность чисел Sn легко написать соответствующий ей ряд: S1S2S1SnSn–1 Говорят что ряд 1 сходится если соответствующая ему последовательность чисел Sn сходится в этом случае суммой ряда 1 называют предел указанной...
22367. Функции комплексной переменной 202.5 KB
  Областью на комплексной плоскости называют множество D точек обладающее следующими свойствами: Вместе с каждой точкой из D этому множеству принадлежит и достаточно малый круг с центром в этой точке свойство открытости. Простыми примерами областей могут служить окрестности точек на комплексной плоскости. Говорят что на множестве M точек плоскости z задана функция w=fz 1 если указан закон по которому каждой точке zM...
22368. Схемы включения и характеристики биполярных транзисторов 465.5 KB
  Схемы включения БТ. Эквивалентные схемы БТ. Эквивалентные схемы БТ. Схемы включения БТ и их показатели.
22369. УСИЛИТЕЛИ НА БИПОЛЯРНЫХ ТРАНЗИСТОРАХ (БТ) 442 KB
  Характеристики схемы: статические и динамические. Простейшая модель работы транзистора рис. Надо помнить что для всех БТ Рис. Поэтому при проектировании схем надо стремиться к тому чтобы ее характеристики не зависели от величины β.
22370. Основные параметры каскада с ОЭ с последовательной ООС по току 663.5 KB
  Схема усилителя с общим эмиттером. Схема усилителя с общим коллектором. Схема усилителя с общей базой. Осциллограммы напряжений схемы с общим эмиттером с последовательной ООС по току Это схема каскада с последовательной ООС по току.
22371. Режимы работы усилительных устройств 626.5 KB
  Рабочую точку выбирают в середине проходной динамической характеристики каскада рис. Рис. Характеристики и сигналы в усилителе работающем в режиме А Режим используют в предварительных каскадах усиления. Рабочую точку задаем в начале проходной характеристики рис.