2298

Математична обробка даних експерименту. Парна регресія

Лекция

Математика и математический анализ

Постановка задачі. Парна регресія. Лінійна парна регресія. Лінеаризація деяких видів двопараметричних зв’язків. Метод найменших квадратів (МНК). Алгоритм МНК. Приклад розв’язування задачі в середовищі системи Mathcad.

Украинкский

2013-01-06

74.68 KB

72 чел.

Лекція 13. Математична обробка даних експерименту. Парна регресія

План

1. Постановка задачі. Парна регресія.

2. Лінійна парна регресія.

3. Лінеаризація деяких видів двопараметричних зв’язків.

4. Метод найменших квадратів (МНК).

5. Алгоритм МНК.

6. Приклад розв’язування задачі в середовищі системи Mathcad.

1. Постановка задачі. Парна регресія

В практичній діяльності при проведенні досліджень виникає необхідність в математичній обробці результатів експерименту. Для цього використовують кореляційний та регресійний аналіз.

Кореляція (співвідношення, відповідність) – залежність між явищами або величинами, що не мають чіткого функціонального зв’язку.

Регресія (повернення) – ймовірнісна залежність середнього значення якоїсь величини від іншої величини.

При застосуванні регресійного аналізу можна використовувати два види регресій:

  1.  парна регресія – характеризує взаємозв’язок двох множин {xi} та {yi}, тобто одному значенню множини {yi} відповідає тільки одне значення множини {xi};
  2.  множинна регресія – характеризує взаємозв’язок більш, ніж двох множин, тобто одному значенню множини {yi} може відповідати два і більше значень множин {xi(k)}.

Розглянемо парну регресійну залежність результатів експерименту (таблиця 1)

 Результати експерименту

      Таблиця 1

X

x1

x2

x3

xn

Y

y1

y2

y3

yn

Нехай змінні множин X та Y зв’язані між собою деякою функціональною залежністю

y=f(a,b,x). (1)

Якщо на координатній площині x0y відкласти точки з координатами (xi, yi), то отримаємо поле розсіювання, яке може дати наочне представлення про силу тісноти зв’язку та його тип (прямолінійний чи криволінійний) між X та Y.

Математична обробка експериментальних даних (таблиця 1) з допомогою кореляційного та регресійного аналізу проводиться за таким алгоритмом:

1) будують поле розсіювання (на координатній площині x0y відкладають точки з координатами (xi, yi) і з’єднують їх ламаною лінією);

2) вибирають емпіричну формулу (1) користуючись виглядом ламаної лінії;

3) при необхідності лінеаризують формулу (1);

4) визначають параметри a і b формули (1);

5) аналізують результати експерименту.

2. Лінійна парна регресія

Найпростішою залежністю між двома послідовностями є лінійна парна регресія. У цьому випадку рівняння регресії матиме вигляд   (2)

Про тісноту зв’язку між множинами X та Y може свідчити коефіцієнт кореляції r, який приймає значення з інтервалу [-1; 1]:

1)  – зв’язок відсутній;

2) – зв’язок слабкий;

3)  – зв’язок середній;

4)  – зв’язок сильний;

5)  – зв’язок повний.

Якщо , то зв’язок між множинами X та Y прямий, тобто при зростанні X зростають Y; якщо , то зв’язок між множинами X та Y обернений, тобто при зростанні X спадають Y.

3. Лінеаризація деяких видів двопараметричних зв’язків

На практиці дуже часто зв’язок між множинами X та Y носить нелінійний (криволінійний) характер. У більшості випадків за допомогою простих перетворень можна звести нелінійну залежність до лінійної, тобто провести лінеаризацію. Наведемо приклади лінеаризації найбільш часто вживаних нелінійних функцій (табл. 2).

         Таблиця 2

з/п

Функція

Лінеаризуючі перетворення

перетворення змінних

вирази для

коефіцієнтів

y=f(a,b,x)

1

2

3

4

5

6

4. Метод найменших квадратів (МНК)

Лінійний парний регресійний аналіз полягає у визначенні параметрів a і b емпіричної лінійної функції (2), яка описує зв’язок між деяким числом N пар значень (xi, yi) і забезпечує найменшу середньоквадратичну похибку.

Графічно цю задачу можна представити так: у полі розсіювання точок (xi, yi) площини x0y необхідно провести пряму так, щоб величина всіх відхилень задовольняла умову

(3)

Тому цей метод регресійного аналізу називається методом найменших квадратів (МНК).

Для знаходження коефіцієнтів a і b рівняння регресії (2) необхідно знайти часткові похідні по a і b від функції (3) і прирівняти їх до нуля:

(4)

Після простих перетворень отримаємо систему нормальних рівнянь

(5)

Коли розв’яжемо систему (5), то отримаємо коефіцієнти a і b рівняння регресії (2).

Зауваження. На практиці коефіцієнти a і b частіше знаходять з використанням коефіцієнтів кореляції та коваріації.

5. Алгоритм МНК

Алгоритм МНК складається з дев’яти етапів:

  1.  знаходимо середні значення масивів X та Y:
  2.  знаходимо середньоквадратичні вибіркові відхилення:

  1.  знаходимо коефіцієнт коваріації:

  1.  знаходимо коефіцієнт кореляції:

  1.  знаходимо коефіцієнти рівняння регресії:

  1.  знаходимо теоретичні значення змінної Y:

  1.  знаходимо середньоквадратичне відхилення між експери-менттальними та теоретичними значеннями змінної Y:

  1.  знаходимо рівняння ліній смуги довір’я:

  1.  знаходимо інтервал смуги довіря:  

6. Приклад розв’язування задачі в середовищі Mathcad

В таблицю занесені дані експерименту:

x

0

1

2

3

4

5

6

y

4.1

2.4

3

4.3

3.6

5.2

5.9

Побудувати апроксимаційний поліном 1-го степеня . Побудувати в одному графічному вікні графіки заданої дискретної функції і графік отриманої функції .

Завдання виконати в середовищі MathCad.

Розв’язання

 Функції MathCad, які використовуються при розрахунках лінійної регресії:

  1.  line(x,y)вектор із двох елементів (b,a) коефіцієнтів рівняння лінійної регресії
  2.  intercept(x,y) – коефіцієнт b рівняння лінійної регресії
  3.  slope(x,y) - коефіцієнт a рівняння лінійної регресії

Тут x –вектор дійсних даних аргументу, y – вектор дійсних даних функції того ж розміру.

В системі MathCad є два дублюючих один одного способи для розрахунку лінійної регресії.

1-й спосіб.

Рівняння лінійної регресії 

має такий вид:

y=0.414x+2.829

2-й спосіб.

Рівняння лінійної регресії 

має такий вид:

y=0.414x+2.829


 

А также другие работы, которые могут Вас заинтересовать

7410. Корупція. Корупційні злочини та стан хабарництва в Україні 264.5 KB
  ПЛАН: Вступ. Розділ 1. Загальна характеристика поняття корупція. Етимологія слова корупція. Наукове розуміння поняття корупція. Нормативно-правове розуміння корупції. Розділ 2. Корупцій...
7411. Відставка державного службовця в Україні та порядок її здійснення 235 KB
  Вступ Реалізація положень Конституції України і успішне здійснення завдань держави, пов’язаних із її розвитком, соціально-економічними і ринковими перетвореннями, значною мірою залежить від професійного та сумлінного виконання державними ...
7412. Юридична відповідальність державних службовців 82.5 KB
  Юридична відповідальність державних службовців. Дисциплінарна відповідальність. Кримінальна відповідальність. Адміністративна відповідальність. Відповідальність за заподіяну шкоду. Відповідальність за корупційні діяння та інші...
7413. Відповідальність державних службовців за інші правопорушення, повязані з корупцією 301.5 KB
  Мета даної роботи - розкрити поняття, зміст, основні характеристики та властивості інших правопорушень, пов’язаних з корупцією в галузі державної служби, а також по можливості визначити місце цих понять в системі українського законодавства.
7414. Сумматоры с параллельным переносом 126.5 KB
  Тема: Сумматоры с параллельным переносом Сумматоры с параллельным переносом - сумматоры, в которых сложение выполняется как поразрядная операция. Применяются в устройствах с высоким быстродействием микроопераций сложения. При этом старают...
7415. Методы изготовления и прокладки оптических кабелей 168 KB
  Методы изготовления и прокладки оптических кабелей. Технологический процесс изготовления оптического кабеля базируется на основных принципах кабельной технологии. Однако для практической реализации разнообразных конструкций ОК, обладающих отличитель...
7416. Программируемые логические матрицы 240 KB
  Тема: Программируемые логические матрицы Программируемая логическая матрица (ПЛМ) - это универсальная структура, позволяющая запрограммировать систему булевых функций путем организации связи между вертикальными и горизонтальными шинами. Набор э...
7417. Соединение оптических волокон 645 KB
  Соединение оптических волокон Соединение оптических волокон является наиболее ответственной операцией при монтаже кабеля, предопределяющей качество и дальность связи по ВОЛС. Соединение волокон и монтаж кабелей производятся как в процессе производст...
7418. Микропроцессоры (МП) и их характеристика 83.5 KB
  Тема: Микропроцессоры (МП) Микропроцессорами называются цифровые устройства, осуществляющие вычисления в соответствии с заданным законом функционирования, которые выполнены в виде интегральной схемы. Микропроцессоры (МП) по применимости класси...