23024

Оптимізаційні методи моделювання неперервних початково-крайових умов

Лекция

Экономическая теория и математическое моделирование

Постановка задачі та проблеми її розвязання. Ці задачі поставлені та розвязані в лекції 5.1 де узагальнена векторфункція зовнішньодинамічних факторів які моделюються вектор значень моделюючих функцій та а матрична функція яка через функцію Гріна повязана зі специфікою розвязуваної задачі. Позначивши через множину точок дискретизації моделюючих функцій керуючої функції та враховуючи помилки в розвязанні задачі моделювання що визначається величиною 10.

Русский

2013-08-04

475.5 KB

1 чел.

81

 Стоян В.А.

Лекція 10. Оптимізаційні методи моделювання  неперервних початково-крайових умов

10.1. Постановка задачі та проблеми її розв’язання. Розглянуті в попередніх двох лекціях методи дозволяють оптимізувати вибір точок спостереження за зовнішньо-динамічними факторами системи (зовнішньо-динамічні збурення, початкові та крайові умови) при моделюванні їх дискретними та неперервними по просторово-часових координатах моделюючими функціями та . Це у випадку, коли зовнішньо-динамічні фактори, які підлягають моделюванню, дискретизовані. Однак, як відзначалося в п.5.1, цікавими і потрібними є постановки задач, коли зовнішньо-динамічні фактори системи при їх моделюванні залишаються неперервними. Ці задачі поставлені та розв’язані в лекції 5.

Розв’язки таких задач, або найкраще середньоквадратичне наближення до них, знаходилися при оберненні наступної системи функціональних співвідношень

           (10.1)

де - узагальнена вектор-функція зовнішньо-динамічних факторів, які моделюються, - вектор значень моделюючих функцій  та , а - матрична функція, яка через функцію Гріна пов’язана зі специфікою розв’язуваної задачі. Вигляд цієї функції та її розмірність визначаються вибором точок, в яких діють керувачі та моделюючі функції.

Позначивши через множину точок дискретизації моделюючих функцій  керуючої функції  та враховуючи помилки в розв’язанні задачі моделювання, що визначається величиною

         (10.2)

розписаною згідно (7.16) в п.7.3, ставиться задача мінімізації цих помилок.

Описані в 7.5 градієнтні методи розв’язання задачі

            (10.3)

можуть бути реалізовані за умови, коли будуть побудовані зручні для використання аналітичні формули обчислення похідних від матричної функції  по координатах  керувачів – координатах, якими визначається розмірність та структура вектора  і пов’язаного з ним  матричного рядка-функції

Нижче, з використанням узагальнень формул Гревіля, будуть запропоновані варіанти побудови аналітичних залежностей  від , а отже і обчислення похідних .

10.2. Формули Гревіля для матричних рядків-функцій. Як і в п.5.2 лекції 5, в якій будувався загальний розв’язок системи вигляду (10.1), розглянемо спочатку дискретизовані варіанти системи, подані співвідношеннями (5.14), а саме

          (10.4)

де - точки дискретизації координати

Позначивши через - крок дискретизації інтервалу (області) зміни змінної , як і в п.5.2, введемо до розгляду матричний стовпець-функцію дискретного аргументу

 

такий, що

         (10.5)

Зауважимо, що як і при роботі з матричними вектор-функціями  (лекція 9), функції  та  залежать неявно від множини точок . Залежність ця розуміється і тимчасово не вказується для спрощення записів та викладок, але буде вказана при побудові розрахункових формул для задач оптимізації вибору точок .

Враховуючи, що процес побудови та дослідження загального розв’язку задачі обернення співвідношень (10.1) будувався з використанням розв’язку задачі  для дискретизованого аналогу (10.4) цих співвідношень, а також того факту, що явну залежність псевдооберненої матриці від своїх параметрів ми отримали з використанням формули Гревіля, розглянемо варіанти узагальнення цієї формули на матричний стовпець-функцію  дискретного аргументу .

Розширюючи кожну з - вимірних матриць  - вимірним стовпцем  застосуємо формулу Гревіля (8.2) до матричного стовпця

        (10.6)

Виходячи зі структури формули Гревіля (8.11) для прямокутної матриці C розширеної стовпцем a позначимо через

                              (10.7)

Після чого, виходячи з (8.11), (8.12), маємо:

 

.                   (10.8)

Звідки, позначивши через

для елементів  отримаємо:

  (10.9)

де ,

а інші позначення відповідають прийнятим в (10.7).

Для переходу до неперервного випадку будемо виходити із співвідношення (10.9), розглядаючи їх при

Враховуючи, що по аналогії з (10.5)

 

з (10.9) отримаємо:

     (10.10)

де тепер

 

       (10.11)

  

Зауважимо, що область інтегрування в (10.11) залежить від постановки задачі моделювання. Область тут не конкретизується, оскільки відсутня конкретизація задачі і при записі рівнянь (10.1).

10.3. До реалізації алгоритмів оптимізації розміщення керувачів у задачі моделювання початково-крайових умов. Для реалізації описаної в п.7.5 градієнтної процедури оптимізації розміщення керувачів, координати яких визначаються значеннями  , будемо виходити з того, що координати ці впливають на розв’язок задачі через рядок-функцію , що і відобразимо, перепозначивши  далі  на . Врахуємо також, що залежність цієї вектор-функції від координати  визначається її k- им елементом , де - матрична функція Гріна розглядуваної задачі. Проблему диференціювання  по  розв’яжемо, якщо буде явна залежність цього вектор-рядка  від .

Для розв’язання поставленої проблеми застосуємо узагальнену формулу Гревіля (10.10) до матричної функції

де - матричний рядок-функція  без -го елемента, - цей елемент, а, як і вище,

При цьому

     (10.12)

де

  (10.13)

      (10.14)

                               (10.15)

 

Позначивши через  елементи матричного стовпця , з врахуванням того, що  

з (10.12)-(10.15) знаходимо:

при

при

при

при   

де  - - елемент матричного стовпця

Тобто і для матричного стовпця-функції   побудовані аналітичні формули диференціювання по координатах  керувачів. А це дозволяє практично реалізувати градієнтні процедури оптимізації розміщення керувачів розглядуваної системи згідно критерію (7.9),(7.18),(7.19), а саме:

де - множина псевдорозв’язків відповідної задачі моделювання.

80

Курс лекцій по моделюванню динаміки систем з розподіленими параметрами


 

А также другие работы, которые могут Вас заинтересовать

20814. Расчет осветительной сети молочного блока коровника 298.98 KB
  В качестве источников света осветительной установки молочного блока применяем люминесцентные лампы, так как они обладают высокой световой отдачей и имеют высокий срок службы.
20815. Социально-педагогическая работа с трудными подростками в школе 353.82 KB
  В связи с этим одним из сложных этапов формирования личности выступает подростковый возраст. Особенно частными становятся проявления трудновоспитуемости, меняется характер и поведение подростка. В силу неустойчивости личностной структуры подростки становятся подверженными социальному воздействию, в том числе негативному
20816. Анализ маркетинговой деятельности в ООО «Техносила» 252.19 KB
  В результате исследований была разработана маркетинговая стратегия ООО «Техносила», которая позволит расширить рынок сбыта продукции, проведена социально-экономическая оценка ее реализации.
20817. Видатні живописці Іспанії 89 KB
  Ознайомити учнів із життям та творчістю видатних іспанських художників ХVI - XХ століть Ель Греко, Дієго Веласкесом, Франсіско Гойя; розвивати зацікавленість мистецтвом, спостережливість, інтерес до світової культурної спадщини, естетичні смаки, естетичні критерії суджень про твори мистецтва, вміння висловлювати власну думку; виховувати любов до художньої творчості, дбайливе ставлення до пам’яток мистецтва.
20818. ЕКСПЕРИМЕНТАЛЬНА ПЕРЕВІРКА ЕФЕКТИВНОСТІ ПЕДАГОГІЧНИХ УМОВ ОРГАНІЗАЦІЇ ЕСТЕТИЧНОГО ВИХОВАННЯ ПЕРШОКЛАСНИКІВ У ХОДІ УРОКІВ НАВЧАННЯ ГРАМОТИ 305 KB
  Розробити систему критеріїв та показників дослідження складових естетичної свідомості (мотивації щодо участі в естетичній діяльності та рівня знань щодо естетичної краси слова першокласників на уроках навчання грамоти). Отримати дані про наявний рівень мотивації першокласників щодо участі в естетичній діяльності, знань учнів про естетичну красу слова.
20819. Драматургічні особливості, сценічна історія, популярність в народі та значення п’єси І.Котляревського «Наталка Полтавка» 20.51 KB
  Народність твору полягає не тільки в тому, що він написаний живою народною мовою, а й у тому, який його зміст і чи поданий він з народних традицій, чи відображає погляди, настрої і прагнення народу.
20820. РОЛЬ МОРАЛЬНО-ЕСТЕТИЧНИХ ІДЕАЛІВ В ВИХОВАННІ НАЦІОНАЛЬНОЇ ЕЛІТИ 72 KB
  Василь Пачовський писав: “Всі великі державні нації мають ідеї свого національного посланництва, які виростають з почуття самоповаги провідної верстви. Суть цієї ідеї – як каже В.Липинський – лежить в тому
20821. Организация бухгалтерского и налогового учета основных средств на ООО «Агро-Сибирь» 113.32 KB
  Отличительной особенностью основных средств является их многократное использование в процессе производства, сохранение первоначального внешнего вида (формы) в течение длительного периода. Под воздействием производственного процесса и внешней среды они снашиваются постепенно и переносят свою первоначальную стоимость
20822. Відповідальність за розголошення лікарської таємниці 210.5 KB
  Проаналізувати лікарську таємницю як елемент системи професійної таємниці; здійснити загальну характеристику інституту лікарської таємниці як об’єкта правового регулювання; визначити суб’єктів збереження лікарської таємниці та здійснити їх класифікацію; визначити в яких випадках відповідно до законодавства України може бути розголошена лікарська таємниця...