23024

Оптимізаційні методи моделювання неперервних початково-крайових умов

Лекция

Экономическая теория и математическое моделирование

Постановка задачі та проблеми її розвязання. Ці задачі поставлені та розвязані в лекції 5.1 де узагальнена векторфункція зовнішньодинамічних факторів які моделюються вектор значень моделюючих функцій та а матрична функція яка через функцію Гріна повязана зі специфікою розвязуваної задачі. Позначивши через множину точок дискретизації моделюючих функцій керуючої функції та враховуючи помилки в розвязанні задачі моделювання що визначається величиною 10.

Русский

2013-08-04

475.5 KB

1 чел.

81

 Стоян В.А.

Лекція 10. Оптимізаційні методи моделювання  неперервних початково-крайових умов

10.1. Постановка задачі та проблеми її розв’язання. Розглянуті в попередніх двох лекціях методи дозволяють оптимізувати вибір точок спостереження за зовнішньо-динамічними факторами системи (зовнішньо-динамічні збурення, початкові та крайові умови) при моделюванні їх дискретними та неперервними по просторово-часових координатах моделюючими функціями та . Це у випадку, коли зовнішньо-динамічні фактори, які підлягають моделюванню, дискретизовані. Однак, як відзначалося в п.5.1, цікавими і потрібними є постановки задач, коли зовнішньо-динамічні фактори системи при їх моделюванні залишаються неперервними. Ці задачі поставлені та розв’язані в лекції 5.

Розв’язки таких задач, або найкраще середньоквадратичне наближення до них, знаходилися при оберненні наступної системи функціональних співвідношень

           (10.1)

де - узагальнена вектор-функція зовнішньо-динамічних факторів, які моделюються, - вектор значень моделюючих функцій  та , а - матрична функція, яка через функцію Гріна пов’язана зі специфікою розв’язуваної задачі. Вигляд цієї функції та її розмірність визначаються вибором точок, в яких діють керувачі та моделюючі функції.

Позначивши через множину точок дискретизації моделюючих функцій  керуючої функції  та враховуючи помилки в розв’язанні задачі моделювання, що визначається величиною

         (10.2)

розписаною згідно (7.16) в п.7.3, ставиться задача мінімізації цих помилок.

Описані в 7.5 градієнтні методи розв’язання задачі

            (10.3)

можуть бути реалізовані за умови, коли будуть побудовані зручні для використання аналітичні формули обчислення похідних від матричної функції  по координатах  керувачів – координатах, якими визначається розмірність та структура вектора  і пов’язаного з ним  матричного рядка-функції

Нижче, з використанням узагальнень формул Гревіля, будуть запропоновані варіанти побудови аналітичних залежностей  від , а отже і обчислення похідних .

10.2. Формули Гревіля для матричних рядків-функцій. Як і в п.5.2 лекції 5, в якій будувався загальний розв’язок системи вигляду (10.1), розглянемо спочатку дискретизовані варіанти системи, подані співвідношеннями (5.14), а саме

          (10.4)

де - точки дискретизації координати

Позначивши через - крок дискретизації інтервалу (області) зміни змінної , як і в п.5.2, введемо до розгляду матричний стовпець-функцію дискретного аргументу

 

такий, що

         (10.5)

Зауважимо, що як і при роботі з матричними вектор-функціями  (лекція 9), функції  та  залежать неявно від множини точок . Залежність ця розуміється і тимчасово не вказується для спрощення записів та викладок, але буде вказана при побудові розрахункових формул для задач оптимізації вибору точок .

Враховуючи, що процес побудови та дослідження загального розв’язку задачі обернення співвідношень (10.1) будувався з використанням розв’язку задачі  для дискретизованого аналогу (10.4) цих співвідношень, а також того факту, що явну залежність псевдооберненої матриці від своїх параметрів ми отримали з використанням формули Гревіля, розглянемо варіанти узагальнення цієї формули на матричний стовпець-функцію  дискретного аргументу .

Розширюючи кожну з - вимірних матриць  - вимірним стовпцем  застосуємо формулу Гревіля (8.2) до матричного стовпця

        (10.6)

Виходячи зі структури формули Гревіля (8.11) для прямокутної матриці C розширеної стовпцем a позначимо через

                              (10.7)

Після чого, виходячи з (8.11), (8.12), маємо:

 

.                   (10.8)

Звідки, позначивши через

для елементів  отримаємо:

  (10.9)

де ,

а інші позначення відповідають прийнятим в (10.7).

Для переходу до неперервного випадку будемо виходити із співвідношення (10.9), розглядаючи їх при

Враховуючи, що по аналогії з (10.5)

 

з (10.9) отримаємо:

     (10.10)

де тепер

 

       (10.11)

  

Зауважимо, що область інтегрування в (10.11) залежить від постановки задачі моделювання. Область тут не конкретизується, оскільки відсутня конкретизація задачі і при записі рівнянь (10.1).

10.3. До реалізації алгоритмів оптимізації розміщення керувачів у задачі моделювання початково-крайових умов. Для реалізації описаної в п.7.5 градієнтної процедури оптимізації розміщення керувачів, координати яких визначаються значеннями  , будемо виходити з того, що координати ці впливають на розв’язок задачі через рядок-функцію , що і відобразимо, перепозначивши  далі  на . Врахуємо також, що залежність цієї вектор-функції від координати  визначається її k- им елементом , де - матрична функція Гріна розглядуваної задачі. Проблему диференціювання  по  розв’яжемо, якщо буде явна залежність цього вектор-рядка  від .

Для розв’язання поставленої проблеми застосуємо узагальнену формулу Гревіля (10.10) до матричної функції

де - матричний рядок-функція  без -го елемента, - цей елемент, а, як і вище,

При цьому

     (10.12)

де

  (10.13)

      (10.14)

                               (10.15)

 

Позначивши через  елементи матричного стовпця , з врахуванням того, що  

з (10.12)-(10.15) знаходимо:

при

при

при

при   

де  - - елемент матричного стовпця

Тобто і для матричного стовпця-функції   побудовані аналітичні формули диференціювання по координатах  керувачів. А це дозволяє практично реалізувати градієнтні процедури оптимізації розміщення керувачів розглядуваної системи згідно критерію (7.9),(7.18),(7.19), а саме:

де - множина псевдорозв’язків відповідної задачі моделювання.

80

Курс лекцій по моделюванню динаміки систем з розподіленими параметрами


 

А также другие работы, которые могут Вас заинтересовать

4824. Создание первой программы на языке Turbo Pascal 184 KB
  Создание первой программы. Цель: Показать студентам пример создания программы. Задачи: Воспитательная: повторение уже изученного языка программирования TurboPascal. Учебная: научить создавать программы. Развивающая: развитие внимательности. Пл...
4825. Создание первой программы в языке Turbo Pascal 94.5 KB
  Создание первой программы. Цель: Показать студентам управление программой при помощи меню. Задачи: Воспитательная: повторение уже изученного языка программирования TurboPascal. Учебная: научить создавать программы. Развивающая: развитие внимат...
4826. Отладка программ на языке Pascal 185 KB
  Отладка программ Цель: Дать студентам понятие ошибки, причины их возникновения. Задачи: Воспитательная: любая программа несовершенна, всегда находятся ошибки, исправить которые требует время. Учебная: обнаруживать ошибки и вовремя исправлять их. Раз...
4827. Управляющие структуры Object Pascal 273.5 KB
  Управляющие структуры ObjectPascal. Цель: Повторение со студентами управляющих структур Pascal. Задачи: Воспитательная: необходимость повторения. Учебная: повторение управляющих структур и их применение в среде разработки ObjectPascal. Р...
4828. Символы и строки в среде разработки Object Pascal 80 KB
  Символы и строки. Цель: Повторение со студентами записи символов и строк. Задачи: Воспитательная: необходимость повторения. Учебная: повторение записи символов и строк в среде разработки ObjectPascal. Развивающая: развитие внимательности. План...
4829. Консольное приложение. Создание приложения под DOS 87.5 KB
  Консольное приложение. Цель: Создание консольного приложения. Задачи: Воспитательная: необходимость повторения. Учебная: создание приложения под DOS. Развивающая: развитие внимательности. План занятия. Организационный момент. Изучение но...
4830. Массивы. И работа с ними в языке Pascal 446.5 KB
  Массивы. Цель: Научить студентов использовать массивы при написании программы. Задачи: Воспитательная: необходимость повторения. Учебная: создание приложений для работы с массивами. Развивающая: развитие внимательности. План занятия. Организац...
4831. Процедуры и функции в программировании на языке Pascal 151 KB
  Процедуры и функции. Цель: Научить студентов избегать дублирования кода в программе. Задачи: Воспитательная: работа над собой. Учебная: создание приложений. Развивающая: развитие внимательности. План занятия. Организационный момент. Изуч...
4832. Создание приложений позволяющих сохранять результат в файле 160 KB
  Файлы. Цель: Научить студентов создавать приложения, позволяющие сохранять результаты работы в файле. Задачи: Воспитательная: работа над собой. Учебная: создание приложений. Развивающая: развитие внимательности. План занятия. Организационный м...