23025

Формули псевдообернення збурених матриць та їх місце в задачах моделювання динаміки систем з розподіленими параметрами

Лекция

Экономическая теория и математическое моделирование

Будемо вважати що збурення матриці С виконується в загальному випадку по всіх елементах що спонукає працювати з матрицями СabT та СabT де для LMвимірної матриці С aRL bRM вектори якими і визначається збурення матриці С а отже і системи вцілому. Тому дослідження змін матриць СabT та СabT в залежності від значень векторів а та b є актуальним. Якщо при роботі з матрицею СabT проблем немає залежності від а та b тут явні то для матриці СabT потрібні зручні та ефективні методи та засоби обчислення...

Русский

2013-08-04

463.5 KB

0 чел.

90

 Стоян В.А.

Лекція 11. Формули псевдообернення збурених матриць та їх місце в задачах моделювання динаміки систем з розподіленими параметрами

11.1. Дискретизований варіант задачі динаміки збурених систем. Розглянуті вище постановки та розв’язки задач моделювання динаміки систем з розподіленими параметрами мали на увазі, що фізико-технічні характеристики системи незмінні. В силу цього незмінними вважалися і характеристики моделі. Це і структура моделі, і структура та властивості її входів-виходів.

Однак в реальному житті деякі характеристики моделі та їх входів-виходів можуть зазнавати невеликих змін – збурень (випадкових, або детермінованих ). Зміни ці з врахуванням прийнятих тут методів моделювання впливають на матричну функцію Гріна, на визначені нею значення елементів матриць та матричних рядків (стовпців)-функцій. Потрібні тому формули, які дозволяли б легко врахувати ці впливи на характеристики моделі та розвязок задач.

Для початку обмежимося  дискретизованим варіантом моделі системи, коли матрична функція Гріна дискретизована як по штрихованих, так і по нештрихованих координатах. В цьому випадку модель системи визначається прямокутною матрицею С, а розв’язок та дослідження моделі пов’язані з матрицею С+ - псевдооберненною до С.

Будемо вважати, що збурення матриці С виконується ( в загальному випадку) по всіх елементах, що спонукає працювати з матрицями (С+abT) та (С+abT)+ , де для (LM)-вимірної матриці С, aRL, bRMвектори, якими і визначається збурення матриці С, а отже і системи вцілому.

Якщо пригадати структуру інтегральної форми моделі та вникнути в її дискретизований варіант, то стає зрозумілим, що матриця аеіТ ( і=) описує збурення і-го входу системи, а матриця еіbT ( і=)- її і-го виходу. Набір же матриць аеіТ та еіbT дозволяє накрити всі входи-виходи системи. Тому дослідження змін матриць    (С+abT) та (С+abT)+ в залежності від значень векторів а та b є актуальним.

Якщо при роботі з матрицею (С+abT) проблем немає – залежності від а та b тут явні, то для матриці (С+abT)+ потрібні зручні та ефективні методи та засоби обчислення впливів а та b на зміст її елементів.

Нижче ми наведемо формули якими задається аналітична залежність

                           (С+abT)+=f(C,C+,a,b)                                         (11.1)

для різних випадків та варіантів збурень. Варіанти ці пов’язані з лінійною залежністю (незалежністю) векторів а та b з вектор-стовцями (рядками) матриці С, яка визначається значеннями aTZ(CT)a та bTZ(C)b, де Z(CT)=IL-CC+ та Z(C)=IM-C+C – проекційні оператори на лінійні оболонки натягнені на вектор-стовпці та вектор-рядки матриці С. Формули ці були побудовані М.Ф. Кириченком. Ми наведемо їх нижче без доведення, орієнтуючись більше на використанні формул для  розв’язання розглядуваних нами задач.

              11.2. Формули обернення збурених матриць.

1. Якщото

;       (11.2)

2. Якщо , то

      (11.3)

де

;

3. Якщо  , то

,                   (11.4)

де ;

4. Якщо , то

.        (11.5)

11.3. Проблеми дослідження систем з розподіленими параметрами при динамічних збуреннях їх користувачів-спостерігачів. Крім розглянутого вище дискретизованого випадку систем з розподіленими параметрами при моделюванні їх зовнішньо-динамічних факторів розглядалися випадки, коли дискретні спостереження та керування системою комбінувалися з неперервними. Інтегральні моделі та розв’язки задач динаміки таких систем будувалися (див. п. 4.1, 5.1) з використанням матричних стовпців

A(s/)=col(G(si-s/), i=),                                               (11.6)

матричних рядків

B(s)=str(G(s-si), i=),                                               (11.7)

та їх обернень

[A(s)](+)=str(),                                          (11.8)

[B(s)](+)=col().

Враховуючи, що елементи матричних вектор-функцій A(s/) та B(s) відповідають конкретним спостерігачам  та керувачам, а також те, що ці спостерігачі-керувачі можуть мати певні флюктуації (збурення) є сенс узагальнити на матричний рядок

[A(s)+abT(s)](+)  (aRL; b(s)RM )

та матричний стовпець

[B(s)+a(s)bT](+)  (a(s)RL ; bRM)

наведені вище формули обернення  збурених прямокутних матриць.

Це дозволило б побудувати аналітичні залежності

[A(s)+abT(s)](+)=fA(A(s),[A(s)](+),a,b(s));

[B(s)+a(s)bT](+)=fB(B(s),[B(s)](+),a(s),b),

а отже і виконати дослідження розглядуваних систем при флюктуаціях (збуреннях)  певних спостерігачів та певних керувачів.

11.4. Формули псевдообернення збурених матричних стовпців-функцій. Для поширення  співвідношень (11.2)-(11.5) на матричний стовпець-функцію (11.6) виконаємо це розглядаючи спочатку для матричного стовпця-функції дискретного аргументу

,

збуреного матричним рядком-функцією

,

де , як і в п.9.2, sN крок дискретизації інтервалу (області) зміни неперервного аргументу s, b(s) є RM   для довільного s із заданої області, а

A1(i)=A(si); bi(i)=b(si)            (i=);

;  ;                     (11.9)

; .

З врахуванням спільності у формулах (11.2)-(11.5) введемо до розгляду наступні скорочені позначення :

a=aTZ((·))a ;      b= (·)Z(A1(·))b1(·);

a=aTR( (·))a ;      b=(·)R(A1(·))b1(·);       (11.10)

             Ab=A1(·)b1(·); =(·)(·);  P=A1(·)(·).

Після чого формули (11.2)-(11.5) стосовно А1(·) запишемо у вигдяді:

а) якщо a>0; b>0, то

[A1(·)+(·)]+=(·)P+(·)P+aaTZ(P)(b1(·)–

              –(·)P+Ab)P++aTZ(P)(1+

            +AbTP+a);                                                                      (11.11)

б) якщо a=0; b>0, то

[+]+=

де

1(·)=col((1),…,(N))=P+a–(b(·)–P+Ab)(1+P+a)

векторний стовпець такий, що

1(k)=(k)=AT(k)P+a–(b(k)–AT(k)P+Ab)(1+P+a);

=;

b=;

в) якщо a=b=0, P+a= –1, то

[+]+=P+–P+aaTP+PP+–         

–P+P+AbP++

+P+aP+P+P+PP+a;                         (11.13)

г) якщо a=b=0, P+a –1, то

[+]+=P+–.                     (11.14)

Позначивши через

             [A1(·)+ab1(·)]+=col([A(si)+abT(si)](+) , i=)()-1;

              [A1(·)]+=col([A(si)](+), i=)()-1,

де

              [A(si)](+)=AT(si)P+; P= для і=,

з (11.11)-(11.14) знаходимо:

а) якщо a>0, b>0, то

[A(si)+abT(si)](+)=AT(si)P+AT(si)P+aaTZ(P)

(b(si)AT(si)P+Ab)P++(b(si)

AT(si)P+Ab)aTZ(P)(1+P+a);                                       (11.15)

б)якщо а=0, b>0 , то

[A(si)+abT(si)](+)=+

+– 

                             (11.16)

+,

де (·)=((s1),…,(sN))T=P+a(b1(·)P+Ab)(1+P+a)

векторний стовпець такий, що

1(i)=(si)=AT(si)P+a(b(si)AT(si)P+Ab)(1+P+a);

AT=;

b=;  ;

в) якщо а=b=0; P+a=1, то

[A(si)+abT(si)](+)=AT(si)P+AT(si)P+aaTP+PP+

AT(si)P+P+AbAbTP++AT(si)P+aP+P+PP+a;          (11.17)

г) якщо a=b=0;  1, то

[A(si)+abT(si)](+)=AT(si)P+.                (11.18)

Тут впродовж (11.5)-(11.18)

a=aT(ILP+P)a;             b=;     (11.19)

a=aTP+PP+a;                     b=AbTP+P+Ab;

Ab=; AbT=; P=.

При N з (11.15) – (11.18) з врахуванням (11.19) та того, що згідно (11.19)

для [A(s)+abT(s)](+) знаходимо:

а) якщо a>0, b>0, то

[A(s)+abT(s)](+)=AT(s)P+[A(s)]TP+aaTZ(P)–

(b(s)[A(s)]TP+Ab)P++(b(s)–

–[A(s)]TP+Ab)aTZ(P)(1+);                           (11.20)

б) якщо a=0, b>0, то

[A(s)+abT(s)](+)=

(11.21)

де

k(s)=[A(s)]TP+a–(b(s)–[A(s)]TP+Ab)(1+P+a);

=;

bk=;

в) якщо а=b=0; Pa= –1, то

[A(s)+abT(s)](+)=AT(s)P+[A(s)]TP+aaTP+PP+

[A(s)]TP+P+AbP++

+[A(s)]TP+aP+P+P+PP+a;                       (11.22)

г) якщо a=b=0; P+a= –1, то

[A(s)+abT(s)](+)=AT(s)P+ ,                     (11.23)

де тепер         

a=aT(IL-P+P)a;             b=||b(s)||2-AbTP+Ab;

a=aTP+PP+a;              b=P+P+Ab;                            (11.24)

Ab=b(s)ds;            AbT=[A(s)]Tds;

P=AT(s)ds

(границі інтегрування визначаються конкретною підстановкою задачі).

11.5. Формули псевдообернення збурених матричних рядків-функцій. Аналогічно розглянутому вище виконаємо поширення співвідношень (11.2)-(11.5) на матричний рядок-функцію [B(s)+a(s)bТ]. Як це було зроблено для матричного стовпця-функції [А(s)+abТ(s)], розглянемо спочатку матричну вектор-функцію дискретного аргументу

B1(·)=col(B(si))

збурену матричною вектор-функцією

a1(·)bT=col(a(si)bT, ),

де для a(s)RL та довільного s із заданої області

B1(i)=B(si)sN;     a1(i)=a(si)    

Для зручного запису співвідношень (11.2)-(11.5) стосовно матричного рядка-функції  [B1(·)+a1(·)bT]+ введемо до розгляду наступні скорочені позначення:

a=(·)Z((·))a1(·);            b= bTZ(B1(·))b;

a= (·)R((·))a1(·);            b= bTR(B1(·))b;

Ba=(·)a1(·);        =(·)B1(·);            P=(·)B1(·).

Після чого формули (11.2)-(11.5) стосовно B1(·) запишемо у вигляді :

а) якщо а>0, b>0, то

[B1(·)+a1(·)bT]+=(·)P+Ba((·)P+(·))

Z(P)bbTP+(·)+Z(P)b((·)

P+(·))(1+bTP+Ba);                                                      (11.25)

б) якщо а=0, b>0, то

[B1(·)+a1(·)bT]+=                                        (11.26)

,      

де =P+BaZ(P)b(1+bTP+Ba);

в) якщо а=b=0,   bTP+Ba=1, то

[B1(·)+a1(·)bT]+=P+BaP+P+(·)

P+PP+bbTP+(·)+P+BabTP+(·)bTP+PP+P+Ba;    (11.27)

г) якщо а=b=0,   bTP+Ba1, то

[B1(·)+a1(·)bT]+= (·) –.                      (11.28)

Позначивши через

[B1(·)+a1(·)bT]+=([B(si)+a(si)bT](+), i=)()-1;

[B1(·)]+=([B(si)](+), i=)()-1,

де [B(si)](+)= P+BT(si), для , з (11.25)-(11.28) знаходимо:

а) якщо а>0, b>0, то

 [B(si)+a(si)bT]+=P+BT(si) P+Ba(aT(si)P+BT(si))           (11.29)

–-Z(P)bbTP+ BT(si)+Z(P)b(aT(si)– P+BT(si))(1+bTP+Ba); 

б) якщо а=0, b>0, то

[B(si)+a(si)bT]+=

                   (11.30)

де =P+Ba-Z(P)b(1+bTP+Ba);

в) якщо a=b=0, bTP+Ba=1 , то

[B(si)+a(si)bT]+=P+BT(si) P+BaP+P+BT(si)      

 P+PP+bbTP+BT(si)+P+BabTP+BT(si)bTP+PP+P+Ba;   (11.31)

г) якщо a=b=0, bTP+Ba1 , то

[B(si)+a(si)bT]+=P+BT(si)–.                   (11.32)

Тут впродовж (11.29)-(11.32)

b=bT(IM-P+P)b;              a=   

b=bTP+PP+b;                a=P+PBa;

Ba=         =              (11.33)

P=

При  з(11.29)-(11.32) з врахуванням (11.33) та того, що згідно (11.24)

       

       

для [B(s)+a(s)bT] (+) знаходимо

а) якщо a>0, b>0, то               

 [B(s)+a(s)bT](+)= P+BT(s)– P+Ba[aT(s)–BTP+BT(s)]–             (11.34)

 –Z(P)bbT P+BT(s)+ Z(P)b(aT(s)–P+BT(s))(1+bTP+Ba);  

б) якщо а=0, b>0, то

[B(s)+a(s)bT](+)=

                       (11.35)

де k= P+BaZ(P)b(1+bTP+Ba);

в) якщо a=b=0, bTP+Ba=1 , то

[B(s)+ a(s)bT](+)=P+BT(s)–P+BaP+P+BT(s) 

 –P+PP+bbT P+BT(s)+P+BabTP+BT(s)bTP+PP+Ba;      (11.36)

г) якщо a=b=0, bTP+Ba 1 , то

[B(s)+a(s)bT](+)=P+BT(s) ,                   (11.37)

де тепер

b=bT(IM-P+P)b;                   a=;

b=bTP+PP+b;             a=P+P+Ba;

Ba=             =

P=               

(границі інтегрування визначаються конкретною постановкою задачі).

91

Курс лекцій по моделюванню динаміки систем з розподіленими параметрами


 

А также другие работы, которые могут Вас заинтересовать

37084. Структура классного часа 22.78 KB
  При подготовке к классному часу классный руководитель должен выполнить следующее:  Определение темы классного часа формулировка его целей исходя из задач воспитательной работы с коллективом;  Тщательный отбор материала с учетом поставленных целей и задач исходя из требований к содержанию классного часа;  Составление плана подготовки проведения классного часа;  Подбор наглядных пособий музыкального оформления подготовку помещения создание обстановки благоприятной для рассмотрения вопроса для откровенного...
37085. СЦЕНАРИЙ КЛАССНОГО ЧАСА О ДРУЖБЕ 80.5 KB
  Недалеко уйдете в дружбе если не расположены прощать друг другу мелкие недостатки. Ларошфуко Истинная дружба есть забвение самого себя для того чтобы жить только в другом. Направо пойдешь друга потеряешь.
37086. Сценарий классного часа, посвященный победе под Сталинградом 29 KB
  Чтец: Сороковые роковые Военные и фронтовыеГде извещенья похоронныеИ перестуки эшелонные. Сороковые роковыеСвинцовые пороховыеВойна гуляет по РоссииА мы такие молодые Чтец: 1942 год. Чтец: Выход к Волге и захват Сталинграда мог обеспечить фашистским войскам успешное продвижение на Кавказ к его нефтяным богатствам. Чтец: Кроме того захват Сталинграда разделил бы фронт наших войск надвое отрезал центральные области от южных а главное дал бы возможность гитлеровцам обойти Москву с востока и взять ее.
37087. Литературно-музыкальная композиция «Сталинградская битва. Курская дуга» 134.5 KB
  Курская дуга Цели:расширять представления учащихся о Сталинградской битве и Курской дуге формировать чувство патриотизма любви к Родине чувство гордости за свою страну на примере героических поступков людей в военное время воспитывать уважительное отношение к старшему поколению памятникам войны.Война гуляет по РоссииА мы такие молодые Год 1941 июнь Страна жила мирной жизнью надеясь что пожар войны который разгорелся в Европе не затронет нашу страну. ИюньТогда ещё не знали мыСо школьных вечеров шагаяЧто завтра будет первый день...
37088. Сценарий классного часа «Экскурсионный день, проведенный в Новодевичьем монастыре» 160 KB
  По патриаршей грамоте 1598 года полным названием монастыря было: Пречестная Великая обитель Пречистыя Богородицы Одигитрии Новый Девичий монастырь. Первое о чем хочется рассказать это об истории Новодевичьего монастыря. Витает птицей в синем небе дух святойВ полёте всё он зорким оком озираетИ тишину монастыря его покойОн верной службой день и ночь оберегает. Таким образом в 1523 году из великокняжеской казны было выдано 230 килограммов серебра на сооружение монастыря.
37089. Сценарий классного часа для 1 класса «Что такое дружба?» 54 KB
  Слайд 1 Ребята давайте поговорим о школьной дружбе. Слайд 2 Иногда говорят: Друзья не разлей вода. Как вы понимаете это выражение Что же такое дружба Слайд 3 Давайте прочитаем стихотворение и узнаем как на этот вопрос отвечают другие. Дружить должны все на свете: И звери и птицы и дети Слайд 4 А вот так слово толкуется в словаре В.
37090. Что такое школьная дружба 56 KB
  Оформление доски Ход мероприятия 1 этап Ребята давайте поговорим о школьной дружбе. 2 этап Иногда говорят: Друзья не разлей вода. Как вы понимаете это выражение Что же такое дружба 3 этап Давайте прочитаем стихотворение и узнаем как на этот вопрос отвечают другие. Дружить должны все на свете: И звери и птицы и дети Так что же такое дружба 4 этап А вот так слово толкуется в словаре В.