23025

Формули псевдообернення збурених матриць та їх місце в задачах моделювання динаміки систем з розподіленими параметрами

Лекция

Экономическая теория и математическое моделирование

Будемо вважати що збурення матриці С виконується в загальному випадку по всіх елементах що спонукає працювати з матрицями СabT та СabT де для LMвимірної матриці С aRL bRM – вектори якими і визначається збурення матриці С а отже і системи вцілому. Тому дослідження змін матриць СabT та СabT в залежності від значень векторів а та b є актуальним. Якщо при роботі з матрицею СabT проблем немає – залежності від а та b тут явні то для матриці СabT потрібні зручні та ефективні методи та засоби обчислення...

Русский

2013-08-04

463.5 KB

0 чел.

90

 Стоян В.А.

Лекція 11. Формули псевдообернення збурених матриць та їх місце в задачах моделювання динаміки систем з розподіленими параметрами

11.1. Дискретизований варіант задачі динаміки збурених систем. Розглянуті вище постановки та розв’язки задач моделювання динаміки систем з розподіленими параметрами мали на увазі, що фізико-технічні характеристики системи незмінні. В силу цього незмінними вважалися і характеристики моделі. Це і структура моделі, і структура та властивості її входів-виходів.

Однак в реальному житті деякі характеристики моделі та їх входів-виходів можуть зазнавати невеликих змін – збурень (випадкових, або детермінованих ). Зміни ці з врахуванням прийнятих тут методів моделювання впливають на матричну функцію Гріна, на визначені нею значення елементів матриць та матричних рядків (стовпців)-функцій. Потрібні тому формули, які дозволяли б легко врахувати ці впливи на характеристики моделі та розвязок задач.

Для початку обмежимося  дискретизованим варіантом моделі системи, коли матрична функція Гріна дискретизована як по штрихованих, так і по нештрихованих координатах. В цьому випадку модель системи визначається прямокутною матрицею С, а розв’язок та дослідження моделі пов’язані з матрицею С+ - псевдооберненною до С.

Будемо вважати, що збурення матриці С виконується ( в загальному випадку) по всіх елементах, що спонукає працювати з матрицями (С+abT) та (С+abT)+ , де для (LM)-вимірної матриці С, aRL, bRMвектори, якими і визначається збурення матриці С, а отже і системи вцілому.

Якщо пригадати структуру інтегральної форми моделі та вникнути в її дискретизований варіант, то стає зрозумілим, що матриця аеіТ ( і=) описує збурення і-го входу системи, а матриця еіbT ( і=)- її і-го виходу. Набір же матриць аеіТ та еіbT дозволяє накрити всі входи-виходи системи. Тому дослідження змін матриць    (С+abT) та (С+abT)+ в залежності від значень векторів а та b є актуальним.

Якщо при роботі з матрицею (С+abT) проблем немає – залежності від а та b тут явні, то для матриці (С+abT)+ потрібні зручні та ефективні методи та засоби обчислення впливів а та b на зміст її елементів.

Нижче ми наведемо формули якими задається аналітична залежність

                           (С+abT)+=f(C,C+,a,b)                                         (11.1)

для різних випадків та варіантів збурень. Варіанти ці пов’язані з лінійною залежністю (незалежністю) векторів а та b з вектор-стовцями (рядками) матриці С, яка визначається значеннями aTZ(CT)a та bTZ(C)b, де Z(CT)=IL-CC+ та Z(C)=IM-C+C – проекційні оператори на лінійні оболонки натягнені на вектор-стовпці та вектор-рядки матриці С. Формули ці були побудовані М.Ф. Кириченком. Ми наведемо їх нижче без доведення, орієнтуючись більше на використанні формул для  розв’язання розглядуваних нами задач.

              11.2. Формули обернення збурених матриць.

1. Якщото

;       (11.2)

2. Якщо , то

      (11.3)

де

;

3. Якщо  , то

,                   (11.4)

де ;

4. Якщо , то

.        (11.5)

11.3. Проблеми дослідження систем з розподіленими параметрами при динамічних збуреннях їх користувачів-спостерігачів. Крім розглянутого вище дискретизованого випадку систем з розподіленими параметрами при моделюванні їх зовнішньо-динамічних факторів розглядалися випадки, коли дискретні спостереження та керування системою комбінувалися з неперервними. Інтегральні моделі та розв’язки задач динаміки таких систем будувалися (див. п. 4.1, 5.1) з використанням матричних стовпців

A(s/)=col(G(si-s/), i=),                                               (11.6)

матричних рядків

B(s)=str(G(s-si), i=),                                               (11.7)

та їх обернень

[A(s)](+)=str(),                                          (11.8)

[B(s)](+)=col().

Враховуючи, що елементи матричних вектор-функцій A(s/) та B(s) відповідають конкретним спостерігачам  та керувачам, а також те, що ці спостерігачі-керувачі можуть мати певні флюктуації (збурення) є сенс узагальнити на матричний рядок

[A(s)+abT(s)](+)  (aRL; b(s)RM )

та матричний стовпець

[B(s)+a(s)bT](+)  (a(s)RL ; bRM)

наведені вище формули обернення  збурених прямокутних матриць.

Це дозволило б побудувати аналітичні залежності

[A(s)+abT(s)](+)=fA(A(s),[A(s)](+),a,b(s));

[B(s)+a(s)bT](+)=fB(B(s),[B(s)](+),a(s),b),

а отже і виконати дослідження розглядуваних систем при флюктуаціях (збуреннях)  певних спостерігачів та певних керувачів.

11.4. Формули псевдообернення збурених матричних стовпців-функцій. Для поширення  співвідношень (11.2)-(11.5) на матричний стовпець-функцію (11.6) виконаємо це розглядаючи спочатку для матричного стовпця-функції дискретного аргументу

,

збуреного матричним рядком-функцією

,

де , як і в п.9.2, sN крок дискретизації інтервалу (області) зміни неперервного аргументу s, b(s) є RM   для довільного s із заданої області, а

A1(i)=A(si); bi(i)=b(si)            (i=);

;  ;                     (11.9)

; .

З врахуванням спільності у формулах (11.2)-(11.5) введемо до розгляду наступні скорочені позначення :

a=aTZ((·))a ;      b= (·)Z(A1(·))b1(·);

a=aTR( (·))a ;      b=(·)R(A1(·))b1(·);       (11.10)

             Ab=A1(·)b1(·); =(·)(·);  P=A1(·)(·).

Після чого формули (11.2)-(11.5) стосовно А1(·) запишемо у вигдяді:

а) якщо a>0; b>0, то

[A1(·)+(·)]+=(·)P+(·)P+aaTZ(P)(b1(·)–

              –(·)P+Ab)P++aTZ(P)(1+

            +AbTP+a);                                                                      (11.11)

б) якщо a=0; b>0, то

[+]+=

де

1(·)=col((1),…,(N))=P+a–(b(·)–P+Ab)(1+P+a)

векторний стовпець такий, що

1(k)=(k)=AT(k)P+a–(b(k)–AT(k)P+Ab)(1+P+a);

=;

b=;

в) якщо a=b=0, P+a= –1, то

[+]+=P+–P+aaTP+PP+–         

–P+P+AbP++

+P+aP+P+P+PP+a;                         (11.13)

г) якщо a=b=0, P+a –1, то

[+]+=P+–.                     (11.14)

Позначивши через

             [A1(·)+ab1(·)]+=col([A(si)+abT(si)](+) , i=)()-1;

              [A1(·)]+=col([A(si)](+), i=)()-1,

де

              [A(si)](+)=AT(si)P+; P= для і=,

з (11.11)-(11.14) знаходимо:

а) якщо a>0, b>0, то

[A(si)+abT(si)](+)=AT(si)P+AT(si)P+aaTZ(P)

(b(si)AT(si)P+Ab)P++(b(si)

AT(si)P+Ab)aTZ(P)(1+P+a);                                       (11.15)

б)якщо а=0, b>0 , то

[A(si)+abT(si)](+)=+

+– 

                             (11.16)

+,

де (·)=((s1),…,(sN))T=P+a(b1(·)P+Ab)(1+P+a)

векторний стовпець такий, що

1(i)=(si)=AT(si)P+a(b(si)AT(si)P+Ab)(1+P+a);

AT=;

b=;  ;

в) якщо а=b=0; P+a=1, то

[A(si)+abT(si)](+)=AT(si)P+AT(si)P+aaTP+PP+

AT(si)P+P+AbAbTP++AT(si)P+aP+P+PP+a;          (11.17)

г) якщо a=b=0;  1, то

[A(si)+abT(si)](+)=AT(si)P+.                (11.18)

Тут впродовж (11.5)-(11.18)

a=aT(ILP+P)a;             b=;     (11.19)

a=aTP+PP+a;                     b=AbTP+P+Ab;

Ab=; AbT=; P=.

При N з (11.15) – (11.18) з врахуванням (11.19) та того, що згідно (11.19)

для [A(s)+abT(s)](+) знаходимо:

а) якщо a>0, b>0, то

[A(s)+abT(s)](+)=AT(s)P+[A(s)]TP+aaTZ(P)–

(b(s)[A(s)]TP+Ab)P++(b(s)–

–[A(s)]TP+Ab)aTZ(P)(1+);                           (11.20)

б) якщо a=0, b>0, то

[A(s)+abT(s)](+)=

(11.21)

де

k(s)=[A(s)]TP+a–(b(s)–[A(s)]TP+Ab)(1+P+a);

=;

bk=;

в) якщо а=b=0; Pa= –1, то

[A(s)+abT(s)](+)=AT(s)P+[A(s)]TP+aaTP+PP+

[A(s)]TP+P+AbP++

+[A(s)]TP+aP+P+P+PP+a;                       (11.22)

г) якщо a=b=0; P+a= –1, то

[A(s)+abT(s)](+)=AT(s)P+ ,                     (11.23)

де тепер         

a=aT(IL-P+P)a;             b=||b(s)||2-AbTP+Ab;

a=aTP+PP+a;              b=P+P+Ab;                            (11.24)

Ab=b(s)ds;            AbT=[A(s)]Tds;

P=AT(s)ds

(границі інтегрування визначаються конкретною підстановкою задачі).

11.5. Формули псевдообернення збурених матричних рядків-функцій. Аналогічно розглянутому вище виконаємо поширення співвідношень (11.2)-(11.5) на матричний рядок-функцію [B(s)+a(s)bТ]. Як це було зроблено для матричного стовпця-функції [А(s)+abТ(s)], розглянемо спочатку матричну вектор-функцію дискретного аргументу

B1(·)=col(B(si))

збурену матричною вектор-функцією

a1(·)bT=col(a(si)bT, ),

де для a(s)RL та довільного s із заданої області

B1(i)=B(si)sN;     a1(i)=a(si)    

Для зручного запису співвідношень (11.2)-(11.5) стосовно матричного рядка-функції  [B1(·)+a1(·)bT]+ введемо до розгляду наступні скорочені позначення:

a=(·)Z((·))a1(·);            b= bTZ(B1(·))b;

a= (·)R((·))a1(·);            b= bTR(B1(·))b;

Ba=(·)a1(·);        =(·)B1(·);            P=(·)B1(·).

Після чого формули (11.2)-(11.5) стосовно B1(·) запишемо у вигляді :

а) якщо а>0, b>0, то

[B1(·)+a1(·)bT]+=(·)P+Ba((·)P+(·))

Z(P)bbTP+(·)+Z(P)b((·)

P+(·))(1+bTP+Ba);                                                      (11.25)

б) якщо а=0, b>0, то

[B1(·)+a1(·)bT]+=                                        (11.26)

,      

де =P+BaZ(P)b(1+bTP+Ba);

в) якщо а=b=0,   bTP+Ba=1, то

[B1(·)+a1(·)bT]+=P+BaP+P+(·)

P+PP+bbTP+(·)+P+BabTP+(·)bTP+PP+P+Ba;    (11.27)

г) якщо а=b=0,   bTP+Ba1, то

[B1(·)+a1(·)bT]+= (·) –.                      (11.28)

Позначивши через

[B1(·)+a1(·)bT]+=([B(si)+a(si)bT](+), i=)()-1;

[B1(·)]+=([B(si)](+), i=)()-1,

де [B(si)](+)= P+BT(si), для , з (11.25)-(11.28) знаходимо:

а) якщо а>0, b>0, то

 [B(si)+a(si)bT]+=P+BT(si) P+Ba(aT(si)P+BT(si))           (11.29)

–-Z(P)bbTP+ BT(si)+Z(P)b(aT(si)– P+BT(si))(1+bTP+Ba); 

б) якщо а=0, b>0, то

[B(si)+a(si)bT]+=

                   (11.30)

де =P+Ba-Z(P)b(1+bTP+Ba);

в) якщо a=b=0, bTP+Ba=1 , то

[B(si)+a(si)bT]+=P+BT(si) P+BaP+P+BT(si)      

 P+PP+bbTP+BT(si)+P+BabTP+BT(si)bTP+PP+P+Ba;   (11.31)

г) якщо a=b=0, bTP+Ba1 , то

[B(si)+a(si)bT]+=P+BT(si)–.                   (11.32)

Тут впродовж (11.29)-(11.32)

b=bT(IM-P+P)b;              a=   

b=bTP+PP+b;                a=P+PBa;

Ba=         =              (11.33)

P=

При  з(11.29)-(11.32) з врахуванням (11.33) та того, що згідно (11.24)

       

       

для [B(s)+a(s)bT] (+) знаходимо

а) якщо a>0, b>0, то               

 [B(s)+a(s)bT](+)= P+BT(s)– P+Ba[aT(s)–BTP+BT(s)]–             (11.34)

 –Z(P)bbT P+BT(s)+ Z(P)b(aT(s)–P+BT(s))(1+bTP+Ba);  

б) якщо а=0, b>0, то

[B(s)+a(s)bT](+)=

                       (11.35)

де k= P+BaZ(P)b(1+bTP+Ba);

в) якщо a=b=0, bTP+Ba=1 , то

[B(s)+ a(s)bT](+)=P+BT(s)–P+BaP+P+BT(s) 

 –P+PP+bbT P+BT(s)+P+BabTP+BT(s)bTP+PP+Ba;      (11.36)

г) якщо a=b=0, bTP+Ba 1 , то

[B(s)+a(s)bT](+)=P+BT(s) ,                   (11.37)

де тепер

b=bT(IM-P+P)b;                   a=;

b=bTP+PP+b;             a=P+P+Ba;

Ba=             =

P=               

(границі інтегрування визначаються конкретною постановкою задачі).

91

Курс лекцій по моделюванню динаміки систем з розподіленими параметрами


 

А также другие работы, которые могут Вас заинтересовать

20969. Разграничение доступа к ресурсам в MS Windows 100.5 KB
  1] Лабораторная работа № 7 [1] Разграничение доступа к ресурсам в MS Windows [2] Оглавление [2.6] Критерии оценки работы Цели работы освоение средств защищенных версий операционной системы Windows предназначенных для: разграничения доступа субъектов к папкам и файлам; разграничения доступа субъектов к принтерам; разграничения доступа к разделам реестра; обеспечения конфиденциальности папок и файлов с помощью шифрующей файловой системы. Отношение субъектыобъекты можно представить в виде матрицы доступа в строках которой перечислены...
20970. Защита документов MS OFFICE WORD 59.5 KB
  В поле Пароль для открытия файла введите пароль а затем нажмите кнопку ОК. В поле Введите пароль еще раз повторно введите пароль а затем нажмите кнопку ОК. В поле Пароль разрешения записи введите пароль а затем нажмите кнопку ОК. В поле Введите пароль еще раз повторно введите пароль а затем нажмите кнопку ОК.
20971. Защита документов MS EXCEL 72.5 KB
  Введите пароль для защиты листа. Пароль задавать необязательно; однако если не задать пароль любой пользователь сможет снять защиту с листа и изменить защищенные элементы. Убедитесь что выбран пароль который легко запомнить так как если пароль будет утерян получить доступ к защищенным элементам листа будет невозможно. Нажмите кнопку ОК и если будет предложено введите этот пароль еще раз.
20972. Защита электронных документов с помощью электронной цифровой подписи (ЭЦП) 86 KB
  1] Лабораторная работа № 4 [1] Защита электронных документов с помощью электронной цифровой подписи ЭЦП [2] Оглавление [2.2] Принципы использования ЭЦП [2.5] Контрольные вопросы Цели работы Получить базовые представления о механизмах создания и проверки ЭЦП и о цифровых сертификатах.
20973. Управление учётными записями пользователей MS Windows 84.5 KB
  1] Лабораторная работа № 5 [1] Управление учётными записями пользователей MS Windows [2] Оглавление [2.5] Критерии оценки работы Цели работы Освоение средств администратора операционной системы MS Windows таких как: регистрации пользователей и групп в системе определения их привилегий определения параметров политики безопасности относящихся к аутентификации и авторизации пользователей при интерактивном входе Основные понятия Идентификацию и аутентификацию можно считать основой программнотехнических средств безопасности поскольку...
20974. Реализация политики безопасности в MS Windows 93 KB
  1] Лабораторная работа № 6 [1] Реализация политики безопасности в MS Windows [2] Оглавление [2.3] Политика безопасности [2.6] Критерии оценки работы Цели работы освоения средств администратора и аудитора защищенных версий операционной системы Windows предназначенных для: определения параметров политики безопасности; определения параметров политики аудита; просмотра и очистки журнала аудита.
20975. Ассоциативные списки и списки свойств 23.98 KB
  DEFUN F27 L COND NULL L NIL T CONS LENGTH CDR CAR L F27 CDR L пример SETQ SCLAD 'PROCESSORS MATHERBOARDS MEMORY PUT ‘PROCESSORS ‘CORE2DUO 5 PUT ‘PROCESSORS ‘CORE2EXTREME 8 PUT ‘MATHERBOARDS ‘ASUSp6t7 1 PUT ‘MATHERBOARDS ‘ASUSp6t6 12 PUT ‘MATHERBOARDS ‘INTELdp55kg 34 PUT ‘MEMORY ‘DDR 23 PUT ‘MEMORY ‘DDR2 34 PUT ‘MEMORY ‘DDR3 15 PUT ‘MEMORY ‘SDRAM 15 F27 SCLAD = 2 3 4 Исходный список содержит имена объектов списки свойств которых содержат некоторую информацию. DEFUN F29 L X COND...
20976. Создание фреймов и извлечение информации из них 22.85 KB
  Создать фреймы, описывающие фрагмент библиотечной системы, содержащие как декларативную, так и процедуральную (в том числе использующую переменные ФРЛ-среды) составляющие.
20977. Организация сетей фреймов 33.02 KB
  setq TodayYear 2010 deframeq Book1 Nazvanie value Programmirovanie_na_FRL Author value Book2 status: indirect slot: author Year value 2003 PageNum value 672 Popularity value 2000 Quantity value GetQuantity PARM: TodayYear STATUS: EVAL deframeq Book2 Nazvanie value Programmirovanie_na_LISP Author value Chernov_PBajdun_VBunin_A Year value 1993 PageNum value 40 Popularity value 600 Quantity value GetQuantity PARM: TodayYear STATUS:...