23025

Формули псевдообернення збурених матриць та їх місце в задачах моделювання динаміки систем з розподіленими параметрами

Лекция

Экономическая теория и математическое моделирование

Будемо вважати що збурення матриці С виконується в загальному випадку по всіх елементах що спонукає працювати з матрицями СabT та СabT де для LMвимірної матриці С aRL bRM вектори якими і визначається збурення матриці С а отже і системи вцілому. Тому дослідження змін матриць СabT та СabT в залежності від значень векторів а та b є актуальним. Якщо при роботі з матрицею СabT проблем немає залежності від а та b тут явні то для матриці СabT потрібні зручні та ефективні методи та засоби обчислення...

Русский

2013-08-04

463.5 KB

0 чел.

90

 Стоян В.А.

Лекція 11. Формули псевдообернення збурених матриць та їх місце в задачах моделювання динаміки систем з розподіленими параметрами

11.1. Дискретизований варіант задачі динаміки збурених систем. Розглянуті вище постановки та розв’язки задач моделювання динаміки систем з розподіленими параметрами мали на увазі, що фізико-технічні характеристики системи незмінні. В силу цього незмінними вважалися і характеристики моделі. Це і структура моделі, і структура та властивості її входів-виходів.

Однак в реальному житті деякі характеристики моделі та їх входів-виходів можуть зазнавати невеликих змін – збурень (випадкових, або детермінованих ). Зміни ці з врахуванням прийнятих тут методів моделювання впливають на матричну функцію Гріна, на визначені нею значення елементів матриць та матричних рядків (стовпців)-функцій. Потрібні тому формули, які дозволяли б легко врахувати ці впливи на характеристики моделі та розвязок задач.

Для початку обмежимося  дискретизованим варіантом моделі системи, коли матрична функція Гріна дискретизована як по штрихованих, так і по нештрихованих координатах. В цьому випадку модель системи визначається прямокутною матрицею С, а розв’язок та дослідження моделі пов’язані з матрицею С+ - псевдооберненною до С.

Будемо вважати, що збурення матриці С виконується ( в загальному випадку) по всіх елементах, що спонукає працювати з матрицями (С+abT) та (С+abT)+ , де для (LM)-вимірної матриці С, aRL, bRMвектори, якими і визначається збурення матриці С, а отже і системи вцілому.

Якщо пригадати структуру інтегральної форми моделі та вникнути в її дискретизований варіант, то стає зрозумілим, що матриця аеіТ ( і=) описує збурення і-го входу системи, а матриця еіbT ( і=)- її і-го виходу. Набір же матриць аеіТ та еіbT дозволяє накрити всі входи-виходи системи. Тому дослідження змін матриць    (С+abT) та (С+abT)+ в залежності від значень векторів а та b є актуальним.

Якщо при роботі з матрицею (С+abT) проблем немає – залежності від а та b тут явні, то для матриці (С+abT)+ потрібні зручні та ефективні методи та засоби обчислення впливів а та b на зміст її елементів.

Нижче ми наведемо формули якими задається аналітична залежність

                           (С+abT)+=f(C,C+,a,b)                                         (11.1)

для різних випадків та варіантів збурень. Варіанти ці пов’язані з лінійною залежністю (незалежністю) векторів а та b з вектор-стовцями (рядками) матриці С, яка визначається значеннями aTZ(CT)a та bTZ(C)b, де Z(CT)=IL-CC+ та Z(C)=IM-C+C – проекційні оператори на лінійні оболонки натягнені на вектор-стовпці та вектор-рядки матриці С. Формули ці були побудовані М.Ф. Кириченком. Ми наведемо їх нижче без доведення, орієнтуючись більше на використанні формул для  розв’язання розглядуваних нами задач.

              11.2. Формули обернення збурених матриць.

1. Якщото

;       (11.2)

2. Якщо , то

      (11.3)

де

;

3. Якщо  , то

,                   (11.4)

де ;

4. Якщо , то

.        (11.5)

11.3. Проблеми дослідження систем з розподіленими параметрами при динамічних збуреннях їх користувачів-спостерігачів. Крім розглянутого вище дискретизованого випадку систем з розподіленими параметрами при моделюванні їх зовнішньо-динамічних факторів розглядалися випадки, коли дискретні спостереження та керування системою комбінувалися з неперервними. Інтегральні моделі та розв’язки задач динаміки таких систем будувалися (див. п. 4.1, 5.1) з використанням матричних стовпців

A(s/)=col(G(si-s/), i=),                                               (11.6)

матричних рядків

B(s)=str(G(s-si), i=),                                               (11.7)

та їх обернень

[A(s)](+)=str(),                                          (11.8)

[B(s)](+)=col().

Враховуючи, що елементи матричних вектор-функцій A(s/) та B(s) відповідають конкретним спостерігачам  та керувачам, а також те, що ці спостерігачі-керувачі можуть мати певні флюктуації (збурення) є сенс узагальнити на матричний рядок

[A(s)+abT(s)](+)  (aRL; b(s)RM )

та матричний стовпець

[B(s)+a(s)bT](+)  (a(s)RL ; bRM)

наведені вище формули обернення  збурених прямокутних матриць.

Це дозволило б побудувати аналітичні залежності

[A(s)+abT(s)](+)=fA(A(s),[A(s)](+),a,b(s));

[B(s)+a(s)bT](+)=fB(B(s),[B(s)](+),a(s),b),

а отже і виконати дослідження розглядуваних систем при флюктуаціях (збуреннях)  певних спостерігачів та певних керувачів.

11.4. Формули псевдообернення збурених матричних стовпців-функцій. Для поширення  співвідношень (11.2)-(11.5) на матричний стовпець-функцію (11.6) виконаємо це розглядаючи спочатку для матричного стовпця-функції дискретного аргументу

,

збуреного матричним рядком-функцією

,

де , як і в п.9.2, sN крок дискретизації інтервалу (області) зміни неперервного аргументу s, b(s) є RM   для довільного s із заданої області, а

A1(i)=A(si); bi(i)=b(si)            (i=);

;  ;                     (11.9)

; .

З врахуванням спільності у формулах (11.2)-(11.5) введемо до розгляду наступні скорочені позначення :

a=aTZ((·))a ;      b= (·)Z(A1(·))b1(·);

a=aTR( (·))a ;      b=(·)R(A1(·))b1(·);       (11.10)

             Ab=A1(·)b1(·); =(·)(·);  P=A1(·)(·).

Після чого формули (11.2)-(11.5) стосовно А1(·) запишемо у вигдяді:

а) якщо a>0; b>0, то

[A1(·)+(·)]+=(·)P+(·)P+aaTZ(P)(b1(·)–

              –(·)P+Ab)P++aTZ(P)(1+

            +AbTP+a);                                                                      (11.11)

б) якщо a=0; b>0, то

[+]+=

де

1(·)=col((1),…,(N))=P+a–(b(·)–P+Ab)(1+P+a)

векторний стовпець такий, що

1(k)=(k)=AT(k)P+a–(b(k)–AT(k)P+Ab)(1+P+a);

=;

b=;

в) якщо a=b=0, P+a= –1, то

[+]+=P+–P+aaTP+PP+–         

–P+P+AbP++

+P+aP+P+P+PP+a;                         (11.13)

г) якщо a=b=0, P+a –1, то

[+]+=P+–.                     (11.14)

Позначивши через

             [A1(·)+ab1(·)]+=col([A(si)+abT(si)](+) , i=)()-1;

              [A1(·)]+=col([A(si)](+), i=)()-1,

де

              [A(si)](+)=AT(si)P+; P= для і=,

з (11.11)-(11.14) знаходимо:

а) якщо a>0, b>0, то

[A(si)+abT(si)](+)=AT(si)P+AT(si)P+aaTZ(P)

(b(si)AT(si)P+Ab)P++(b(si)

AT(si)P+Ab)aTZ(P)(1+P+a);                                       (11.15)

б)якщо а=0, b>0 , то

[A(si)+abT(si)](+)=+

+– 

                             (11.16)

+,

де (·)=((s1),…,(sN))T=P+a(b1(·)P+Ab)(1+P+a)

векторний стовпець такий, що

1(i)=(si)=AT(si)P+a(b(si)AT(si)P+Ab)(1+P+a);

AT=;

b=;  ;

в) якщо а=b=0; P+a=1, то

[A(si)+abT(si)](+)=AT(si)P+AT(si)P+aaTP+PP+

AT(si)P+P+AbAbTP++AT(si)P+aP+P+PP+a;          (11.17)

г) якщо a=b=0;  1, то

[A(si)+abT(si)](+)=AT(si)P+.                (11.18)

Тут впродовж (11.5)-(11.18)

a=aT(ILP+P)a;             b=;     (11.19)

a=aTP+PP+a;                     b=AbTP+P+Ab;

Ab=; AbT=; P=.

При N з (11.15) – (11.18) з врахуванням (11.19) та того, що згідно (11.19)

для [A(s)+abT(s)](+) знаходимо:

а) якщо a>0, b>0, то

[A(s)+abT(s)](+)=AT(s)P+[A(s)]TP+aaTZ(P)–

(b(s)[A(s)]TP+Ab)P++(b(s)–

–[A(s)]TP+Ab)aTZ(P)(1+);                           (11.20)

б) якщо a=0, b>0, то

[A(s)+abT(s)](+)=

(11.21)

де

k(s)=[A(s)]TP+a–(b(s)–[A(s)]TP+Ab)(1+P+a);

=;

bk=;

в) якщо а=b=0; Pa= –1, то

[A(s)+abT(s)](+)=AT(s)P+[A(s)]TP+aaTP+PP+

[A(s)]TP+P+AbP++

+[A(s)]TP+aP+P+P+PP+a;                       (11.22)

г) якщо a=b=0; P+a= –1, то

[A(s)+abT(s)](+)=AT(s)P+ ,                     (11.23)

де тепер         

a=aT(IL-P+P)a;             b=||b(s)||2-AbTP+Ab;

a=aTP+PP+a;              b=P+P+Ab;                            (11.24)

Ab=b(s)ds;            AbT=[A(s)]Tds;

P=AT(s)ds

(границі інтегрування визначаються конкретною підстановкою задачі).

11.5. Формули псевдообернення збурених матричних рядків-функцій. Аналогічно розглянутому вище виконаємо поширення співвідношень (11.2)-(11.5) на матричний рядок-функцію [B(s)+a(s)bТ]. Як це було зроблено для матричного стовпця-функції [А(s)+abТ(s)], розглянемо спочатку матричну вектор-функцію дискретного аргументу

B1(·)=col(B(si))

збурену матричною вектор-функцією

a1(·)bT=col(a(si)bT, ),

де для a(s)RL та довільного s із заданої області

B1(i)=B(si)sN;     a1(i)=a(si)    

Для зручного запису співвідношень (11.2)-(11.5) стосовно матричного рядка-функції  [B1(·)+a1(·)bT]+ введемо до розгляду наступні скорочені позначення:

a=(·)Z((·))a1(·);            b= bTZ(B1(·))b;

a= (·)R((·))a1(·);            b= bTR(B1(·))b;

Ba=(·)a1(·);        =(·)B1(·);            P=(·)B1(·).

Після чого формули (11.2)-(11.5) стосовно B1(·) запишемо у вигляді :

а) якщо а>0, b>0, то

[B1(·)+a1(·)bT]+=(·)P+Ba((·)P+(·))

Z(P)bbTP+(·)+Z(P)b((·)

P+(·))(1+bTP+Ba);                                                      (11.25)

б) якщо а=0, b>0, то

[B1(·)+a1(·)bT]+=                                        (11.26)

,      

де =P+BaZ(P)b(1+bTP+Ba);

в) якщо а=b=0,   bTP+Ba=1, то

[B1(·)+a1(·)bT]+=P+BaP+P+(·)

P+PP+bbTP+(·)+P+BabTP+(·)bTP+PP+P+Ba;    (11.27)

г) якщо а=b=0,   bTP+Ba1, то

[B1(·)+a1(·)bT]+= (·) –.                      (11.28)

Позначивши через

[B1(·)+a1(·)bT]+=([B(si)+a(si)bT](+), i=)()-1;

[B1(·)]+=([B(si)](+), i=)()-1,

де [B(si)](+)= P+BT(si), для , з (11.25)-(11.28) знаходимо:

а) якщо а>0, b>0, то

 [B(si)+a(si)bT]+=P+BT(si) P+Ba(aT(si)P+BT(si))           (11.29)

–-Z(P)bbTP+ BT(si)+Z(P)b(aT(si)– P+BT(si))(1+bTP+Ba); 

б) якщо а=0, b>0, то

[B(si)+a(si)bT]+=

                   (11.30)

де =P+Ba-Z(P)b(1+bTP+Ba);

в) якщо a=b=0, bTP+Ba=1 , то

[B(si)+a(si)bT]+=P+BT(si) P+BaP+P+BT(si)      

 P+PP+bbTP+BT(si)+P+BabTP+BT(si)bTP+PP+P+Ba;   (11.31)

г) якщо a=b=0, bTP+Ba1 , то

[B(si)+a(si)bT]+=P+BT(si)–.                   (11.32)

Тут впродовж (11.29)-(11.32)

b=bT(IM-P+P)b;              a=   

b=bTP+PP+b;                a=P+PBa;

Ba=         =              (11.33)

P=

При  з(11.29)-(11.32) з врахуванням (11.33) та того, що згідно (11.24)

       

       

для [B(s)+a(s)bT] (+) знаходимо

а) якщо a>0, b>0, то               

 [B(s)+a(s)bT](+)= P+BT(s)– P+Ba[aT(s)–BTP+BT(s)]–             (11.34)

 –Z(P)bbT P+BT(s)+ Z(P)b(aT(s)–P+BT(s))(1+bTP+Ba);  

б) якщо а=0, b>0, то

[B(s)+a(s)bT](+)=

                       (11.35)

де k= P+BaZ(P)b(1+bTP+Ba);

в) якщо a=b=0, bTP+Ba=1 , то

[B(s)+ a(s)bT](+)=P+BT(s)–P+BaP+P+BT(s) 

 –P+PP+bbT P+BT(s)+P+BabTP+BT(s)bTP+PP+Ba;      (11.36)

г) якщо a=b=0, bTP+Ba 1 , то

[B(s)+a(s)bT](+)=P+BT(s) ,                   (11.37)

де тепер

b=bT(IM-P+P)b;                   a=;

b=bTP+PP+b;             a=P+P+Ba;

Ba=             =

P=               

(границі інтегрування визначаються конкретною постановкою задачі).

91

Курс лекцій по моделюванню динаміки систем з розподіленими параметрами


 

А также другие работы, которые могут Вас заинтересовать

34512. Высокое Возрождение в Италии. Общая характеристика искусства Высокого Возрождения. Творчество Леонардо да Винчи, Рафаэля Санти, Микельанджело Буанаротти 17.58 KB
  Творчество Леонардо да Винчи Рафаэля Санти Микельанджело Буанаротти. Флорентийскоримские мастера Леонардо да Винчи 1452 1519 ученик Верроккьо универсальный гений. Непродуктивность Леонардоживописца неспособность довести вещь до конца следствия опережающей работы интеллекта. Леонардо в Милане 1482 1499.
34513. Позднее Возрождение в Венеции. Творчество Тициана, Тинторетто, Веронезе 16.52 KB
  1509 Дрезден Картинная галерея âТри философаâ ок. âЛюбовь небесная и земнаяâ 1514 Рим галерея Боргезе. Импозантность и демонстрация жизненного амплуа модели в портретах Федериго II Гонзага 1529 Мадрид Прадо и Ипполито Медичи 1533 Флоренция галерея Питти. Работы среднего периода: âВведение во храмâ 1534 1538 Венеция Академия âВенера Урбинскаяâ 1538 Флоренция Уффици âДанаяâ 1544 1546 Неаполь галерея Каподимонте.
34514. Северное Возрождение. Искусство Нидерландов. Ян ван Эйк. Рогир ван дер Вейден. Гуто ван дер Гус. Мир И. Босха. Питер Брейгель Старший 19.04 KB
  Ян ван Эйк. Рогир ван дер Вейден. Гуто ван дер Гус. и Яна около 1390 1441 ван Эйков законченного Яном ван Эйком в 1432 г.
34515. Философско-эстетические взгляды А. Мердок. Конфликт искусства и жизни в романах писательницы 15.66 KB
  Конфликт искусства и жизни в романах писательницы Ее философскопсихол. Чаще всего ее романы связаны с событиями частной семейной жизни. По ее мнению роман должен повествовать о сложной нравственности жизни человека о загадочности человеческого индивидуальности о том что человек это необыкновенная ценность она выступила против романа мифа романапритчи и связала роман с философией. В романе 70х : Человек случайности Черный принц Священная и земная любовь на первый план выдвигается философская проблема случайности в жизни...
34516. Игра в сюжетном развитии и повествовательной организации произведений Д. Фаулза 19.88 KB
  До конца 1960х вышли в свет два романа писателя Волхв и роман Женщина французского лейтенанта. При этом Фаулз достигает эффекта максимального присутствия предлагая в конце романа читателю сделать выбор вместе с его героем уподобиться осторожному обывателю или рискнуть обрести свое я в извечном конфликте долга и чувства. деконструирует сам тип викторианского романа. Но задача Фаулза не в том чтобы занять читателя интеллектуальной игрой по разгадке аллюзий а в деконструировании или деконструкции согласно терминологии...
34517. Творчество У. Эко и постмодернизм 18.02 KB
  Эко и постмодернизм. Много сделал Экоученый для осмысления таких явлений как постмодернизм и массовая культура. Постмодернизм согласно Эко не столько явление имеющее строго фиксированные хронологические рамки а скорее определенное духовное состояние особого рода игра участие в которой возможно и в том случае если участник не воспринимает постмодернистскую иронию интерпретируя предложенный текст сугубо серьезно. По мнению Эко высокая и массовая эстетики в постмодернизме сближаются.
34518. Тема строительства нового общества в литературе ГДР 19.54 KB
  Эти предпосылки были полностью реализованы на территории будущей ГДР. Образование ГДР было закономерным итогом антифашистскодемократического переворота ответом прогрессивных сил немецкого народа на раскол Германии западными державами и западногерманской реакцией. С возникновением ГДР в ней наряду с укреплением антифашистскодемократического порядка начался процесс создания основ социализма.
34519. Духовно-нравственная проблематика и ее художетсвенное воплощение в произведениях писателей ГДР 17.54 KB
  1900; роман Мёртвые остаются молодыми 1949 повесть Человек и его имя 1952 Л. Бределя 190164; романыСыновья 1949 Внуки 1953 Г. Мархвицы 18901965; роман Возвращение Кумяков 1952 в поэзии Э. 1912; роман Чудодей 1957 Б.
34520. Тема неопределенного прошлого в произведениях западногерманских писателей (Г. Белль, Г. Грасс) 22.83 KB
  Грасс Генрих Бёлль 19171985 Входил в Группа 47 объединение писателей не желавш.Тематика: Тема Бунтарства в романе описана в образе причастности к фашистскому движению причастие буйвола большинство окружения Генриха Фемеля прильнули к этим течениям он оставался равнодушным однако еще в юным дал обет не принимать их сторону. А помощница Генриха напротив хотела сбежать от опостылевшей ей правильности и вежливости хозяина. Тема порядка: Фемель был как часы как слаженный механизм он делал все с немецкой дотошностью и...