23029

Задачі ідентифікації лінійних алгебраїчних, інтегральних та функціональних перетворень

Лекция

Экономическая теория и математическое моделирование

Постановка та план розв’язання задачі. Далі розв’язки ідентифікаційних задач 16.3 отримаємо із розв’язку допоміжних задач 16. Розглянемо розв’язок задачі 16.

Русский

2013-08-04

487 KB

1 чел.

139

                                                                                 Стоян В.А.

Лекція 16. Задачі ідентифікації лінійних алгебраїчних,    інтегральних та   функціональних перетворень

16.1. Постановка та план розв’язання задачі. Розглянемо задачу ідентифікації алгебраїчного перетворення (15.5) виходячи із заданих послідовностей

               

та                

,     

де   ,   , вхідних та (відповідно) вихідних сигналів. При цьому побудуємо матрицю  таку, щоб

                                   (16.1)

для кожного .

Для ідентифікації інтегрального та функціонального перетворень (15.8) та (15.11) відповідно такої, щоб для  вимірюваних по  вхідних  

,

(   ) та  вихідних

 ,

                

( ) сигналів (тут та надалі розуміється, що )

 ,                     (16.2)

                                  (16.3)

для кожного , розглянемо дві допоміжні задачі:

а) при заданих

     ,

( , ;  ) побудуємо послідовність матриць

 ,  ( )

таких, щоб

      (16.4)

для кожного   ;

 б) при заданих

,

  

( ;   ,  )  побудуємо послідовність матриць

     (  )

таких, щоб

     (16.5)

для кожного   .

Далі розв’язки ідентифікаційних задач (16.2), (16.3) отримаємо із розв’язку допоміжних задач (16.4), (16.5) при .

16.2. Задача ідентифікації алгебраїчних систем. Розглянемо розв’язок задачі (16.1). Будемо виходити при цьому з того, що вектори  та  утворюють матриці

    (16.6)

та

    (16.7)

відповідно. Через  та  тут та надалі будемо позначати вектори, які утворюють рядки матриць. В цих позначеннях шукану матрицю  запишемо у вигляді:

.                   (16.8)

 Неважко бачити, що матриця ця визначатиметься як розв’язок наступної матричної системи:    

 .        (16.9)

Транспонуючи (16.9) маємо:       

 .

Звідки робимо висновок, що

     ().    (16.10)

 Всяке -те () рівняння системи (16.10) дає розклад  - вектора по системі векторів . А це значить, що проекція вектора   () на ортогональне доповнення  до лінійної оболонки , натягненої на вектор-рядки  матриці рівна нулю. Другими словами: необхідною і достатньою умовою існування розв’язку кожного -го рівняння системи (16.10) є наступна:

              ().  (16.11)

Звідки

     (),

або

                 ().  (16.12)

За умови (16.12) загальний розв’язок системи (16.10) запишемо у вигляді:

 ,,               (16.13)

З врахуванням того, що                

з (16.12) знаходимо       .

Звідки:

    .   (16.14)

Таким чином, задача (16.1) по побудові матриці  перетворення спостережуваних вхідних векторів   у вихідні вектори  розв’язана. Необхідною і достатньою умовою істинності такого розв’язку є співвідношення (16.11). Розв’язок (16.14) буде однозначним (),  якщо

.     (16.15)

16.3. Задача ідентифікації дискретносумуючих перетворювачів. Розглянемо задачу побудови матриць  , які послідовність вхідних сигналів  для всякого  згідно (16.4) сумують у вихідний сигнал .

 Для розв’язання задачі позначимо через

     ,      

         () (16.16)

матричну та векторну функції дискретного аргументу  такі, що

,  

для , .

Після чого систему (16.4) стосовно -го спостерігача запишемо в наступному символічному представленні:

    ().   (16.17)

Останнє еквівалентне матричному рівнянню

 ,    (16.18)

в якому   матрична функція дискретного аргументу  така, що                   ;     

       (16.19)

       ,

а

        ().

Позначимо для зручності

;    

       (16.20)

 ,

де

    ();

   ().

В термінах введених позначень транспонована ідентифікаційна система (16.18) запишеться у вигляді

    ().   (16.21)

Система рівнянь (16.21) матиме розв’язок тоді і тільки тоді, коли (по аналогії з (16.11), (16.12))                            (16.22)

для всякого , де з врахуванням (16.19) та (16.20)                .

При цьому                  (16.23) для всякого , де  

 

довільна вектор-функція дискретного аргументу  така, що

      (; ),

а

.

Транспонуючи та об’єднуючи систему розв’язків (16.23) для всіх  знаходимо, що матрична функція , визначена ідентифікаційним рівнянням (16.18), задовольнятиме умові                              Ω,      (16.24)

де

матрична функція дискретного аргументу  така, що ,  , а

.

 Для випадку, коли

,                   (16.25)

множина Ω даватиме однозначний розв’язок   

                                   (16.26)

символічного матричного рівняння (16.18).

Виконуючи у співвідношеннях (16.24) – (16.26) перехід від матричних функцій , ,  до матриць , ,  () знаходимо, що елементи-матриці послідовності ідентифікаційних матриць розглядуваного нами перетворення (16.4) в загальному випадку (при виконанні (16.22)) задовольнятимуть умовам:              

              ().    (16.27)

При

                               (16.28)

      ().                 (16.29)

Зауважимо, що умовою (16.25) визначається повнота матриці-функції . В термінах її елементів це означає, що    .

16.4. Задача ідентифікації лінійноінтегруючих перетворювачів. Розглянемо задачу ідентифікації системи (16.2) інтегруючої розподілений на інтервалі  сигнал  в -му () спостереженні за нею у вихідний вектор .

Для того, щоб (як було сказано в пункті 16.1) при розв’язанні задачі побудови перетворюючої матричної функції  скористатися результатами ідентифікації дискретноінтегруючого перетворювача (16.4) інтервал  дискретизуємо точками  () такими, що , а також позначимо через                    

,      

матричні функції дискретного аргументу  такі, що , . Зауважимо, що тут та надалі

,

 .

Останнє дозволяє розв’язок розглядуваної задачі отримати при  з розв’язку ідентифікаційної задачі

,                   (16.30)

яку ми розв’язали в попередньому пункті.

Враховуючи сказане із співвідношень (16.27) – (16.29) знаходимо, що в загальному випадку                                      ,             (16.31)

де  - довільна інтегровна по  матриця розмірності , а

,   .

Визначена співвідношенням (16.31) матрична функція  буде розв’язком розглядуваної задачі тоді і тільки тоді, коли

       .                (16.32)

За умови, що

   ,

розв’язок задачі буде однозначним. При цьому

 .

16.5. Задача ідентифікації дискретнорозподільчих перетворювачів. Розглянемо задачу побудови послідовності матриць , які заданий в -му () вимірі вхідний сигнал  згідно (16.5) перетворюють в послідовність  вихідних сигналів.

Для розв’язання задачі позначимо через

   ,

            ()

матричну та векторну функції дискретного аргументу   такі, що  

,    

для , .

Після чого систему (16.5) стосовно -го спостерігача запишемо в наступному символічному представленні:

.                  (16.33)

Останнє еквівалентне матричному рівнянню

,     (16.34)

в якому

    

матрична функція дискретного аргументу  така, що

  ,                                 ,

а

      ().

Покладаючи

,   

та вводячи до розгляду векторні функції

 ,

 

дискретного аргументу  такі, що

,

,

транспоновану ідентифікаційну систему (16.34) запишемо у вигляді

   ().   (16.35)

Система рівнянь (16.35) матиме розв’язок тоді і тільки тоді, коли (знову ж по аналогії з (16.11), (16.12))

  ,  (16.36)

де .

При цьому             (16.37)

для всякого, де

  

довільна вектор-функція дискретного аргументу  така, що

   ,      ,    ,

а

.

Транспонуючи та об’єднуючи систему розв’язків (16.37) для всіх  знаходимо, що матрична функція , визначена ідентифікаційним рівнянням (16.33), задовольнятиме умові

,            (16.38)

де        

довільна матрична функція дискретного аргументу  така, що

.

За умови, коли

 ,     (16.39)

множина  задаватиме однозначний розв’язок

     (16.40)

символічного матричного рівняння (16.33).

Виконуючи у співвідношеннях (16.38) – (16.40) перехід від матричних функцій , ,  до матриць , ,  () знаходимо, що елементи-матриці послідовності ідентифікаційних матриць розглядуваного тут перетворення (16.33) в загальному випадку (при виконанні умови (16.36) для вибраного нами ) задовольнятимуть умовам:         (16.41)  для всякого.

При             

    ().                 (16.42)

 16.6. Задача ідентифікації лінійно-функціональних перетворювачів. Розглянемо задачу ідентифікації системи (16.3), якою стаціонарний в часі вхідний вектор    в  - му () спостереженні за системою перетворюється в розподілений на інтервалі  вихідний сигнал .

Для поширення результатів розглянутої тільки що ідентифікації системи (16.6) на систему (16.3) інтервал  дискретизуємо точками   такими, що  , а також позначимо через    ,   

матричні функції дискретного аргументу  такі, що  ,     .

Останнє дозволяє від розглядуваної неперервної по системи (16.3) перейти до дискретної системи вигляду (16.34), ідентифікаційний розв’язок якої нами вже побудований у вигляді (16.38). Звідки при  отримуємо, що             ,       (16.43)

де  - довільна інтегровна по  матриця розмірності , а .

Однозначність визначеного співвідношенням (16.43) розв’язку задачі, як і вище, буде визначатися умовою (16.42). При цьому       .     (16.44)

Зауважимо, що множина розв’язків (16.43), або один із них у формі (16.44), будуть існувати, коли (як це випливає з (16.36))

                (16.45)

для значення  та .

 

 

140

 Курс лекцій по моделюванню динаміки систем з розподіленими параметрами


 

А также другие работы, которые могут Вас заинтересовать

25474. Структура социальной работы. Направлении уровни формы и методы социальной работы 13.46 KB
  Направлении уровни формы и методы социальной работы субъект содержание из вытекающих функций средства управление объект цельОбъект и предмет основополагающие категории развития теории социальной работы. Так в словаресправочнике по социальной работе отмечено: Объектом исследования социальной работы является процесс связей взаимодействий способов и средств регуляции поведения социальных групп и личностей в обществе. Представлен в современной России подсистемами социальной защиты дополнительного образования молодежной...
25475. Современные записки 11.08 KB
  И как теперь видно именно литературный отдел Современных записок создал им известность если не сказать славу обеспечил жизнеспособность всему изданию когда в 1940 году после немецкого вторжения во Францию продолжать его выпуск стало невозможно в НьюЙорке с января 1942 года стал выходить Новый Журнал основанный романистом Марком Алдановым и поэтом Михаилом Цетлиным где был сохранён круг авторов Современных записок. Семьдесят номеров Современных записок журнал задумывался как ежемесячник но по многим причинам связанным...
25476. Принципы профессиональной социальной работы. Значение принципов для практик социальной работы 11.37 KB
  принципы профессиональной социальной работы. Значение принципов для практик социальной работы Принцип универсальности исключение дискриминации при оказании социальной помощи по расовым национальным религиозным политическим и иным признакам Принцип охраны социальных прав оказание помощи клиенту не может быть обусловлено требованием к нему отказаться от своих социальных прав или от части из них Принцип социального реагирования осознание необходимости принимать меры по выявленным социальным проблемам действовать в соответствии с...
25477. Российское телеграфное агентство (РОСТА) — центральный информационный орган советского государства (РСФСР, с 1924 СССР) в 1918—1925 годах. 11.67 KB
  Новое агентство было названо Российским Телеграфным агентством при Всероссийском Центральном Исполнительном Комитете сокращенно РОСТА. Техническую базу РОСТА составили структуры Петроградского телеграфного агентства и частных информационных агентств. СНК всем средствам массовой информации вменялось в обязанность перепечатывать полученные по каналам РОСТА декреты Советского правительства и последние новости.
25478. ГАЗЕТА ИЗВЕСТИЯ ПЕТРОГРАДСКОГО СОВЕТА РАБОЧИХ, КРЕСТЬЯНСКИХ И КРАСНОАРМЕЙСКИХ ДЕПУТАТОВ (1917-1921) 10.78 KB
  Москвы и Московской области 16 апреля 1921 г. Переписка с Обкомом ВКПб ОГПУ прокурором Ленинградской области о работе газеты; о письмах крестьян с критикой коллективизации сельского хозяйства принудительного труда крестьян на лесозаготовках состоянии сельского хозяйства в деревнях Ленинградской области и другим вопросам. ЛЕНИНСКИЙ ПУТЬ ОРГАН ВОЗНЕСЕНСКОГО РАЙКОМА ВКПб И ВОЗНЕСЕНСКОГО ИСПОЛКОМА РАЙОННОГО СОВЕТА ДЕПУТАТОВ ТРУДЯЩИХСЯ ЛЕНИНГРАДСКОЙ ОБЛАСТИ 19381941 Приказы по редакции и типографии газеты.
25479. Методы соц.работы 13.88 KB
  работы давала Хотемова на лекциях в ПЛ № 34 – способы совокупность приемов и операций в соц. по направлениям и формам соц.работы: ● организационные; ● соц.
25481. Эффективность социальной работы- понятие, критерии и показатели 22.57 KB
  Эффективность социальной работы понятие критерии и показатели Существует два определения понятия эффективность социальной работы ЭСР:1 ЭСР это соотношение между достигнутыми результатами эффектами и затратами связанными с обеспечением результатов. На практике приходится считаться с так называемыми предельными результатами когда их количественные и качественные характеристик возрастают изза лимитации целого ряда факторов в данном учреждении социальной защиты; 2 ЭСР это фактически достигнутые и необходимые результаты...
25482. Отечественная журналистика в конце 50-х годов 11.92 KB
  в стране насчитывалось около 4 тыс. Широкое распространение транзисторных приемников позволило вовлечь 85 территории страны в зону возможного приема всесоюзных программ радио. большое распространение в стране получило телевидение. Телевидение стало одним из главных способов информирования населения о важнейших событиях в стране и за рубежом.