23029

Задачі ідентифікації лінійних алгебраїчних, інтегральних та функціональних перетворень

Лекция

Экономическая теория и математическое моделирование

Постановка та план розвязання задачі. Далі розвязки ідентифікаційних задач 16.3 отримаємо із розвязку допоміжних задач 16. Розглянемо розвязок задачі 16.

Русский

2013-08-04

487 KB

1 чел.

139

                                                                                 Стоян В.А.

Лекція 16. Задачі ідентифікації лінійних алгебраїчних,    інтегральних та   функціональних перетворень

16.1. Постановка та план розв’язання задачі. Розглянемо задачу ідентифікації алгебраїчного перетворення (15.5) виходячи із заданих послідовностей

               

та                

,     

де   ,   , вхідних та (відповідно) вихідних сигналів. При цьому побудуємо матрицю  таку, щоб

                                   (16.1)

для кожного .

Для ідентифікації інтегрального та функціонального перетворень (15.8) та (15.11) відповідно такої, щоб для  вимірюваних по  вхідних  

,

(   ) та  вихідних

 ,

                

( ) сигналів (тут та надалі розуміється, що )

 ,                     (16.2)

                                  (16.3)

для кожного , розглянемо дві допоміжні задачі:

а) при заданих

     ,

( , ;  ) побудуємо послідовність матриць

 ,  ( )

таких, щоб

      (16.4)

для кожного   ;

 б) при заданих

,

  

( ;   ,  )  побудуємо послідовність матриць

     (  )

таких, щоб

     (16.5)

для кожного   .

Далі розв’язки ідентифікаційних задач (16.2), (16.3) отримаємо із розв’язку допоміжних задач (16.4), (16.5) при .

16.2. Задача ідентифікації алгебраїчних систем. Розглянемо розв’язок задачі (16.1). Будемо виходити при цьому з того, що вектори  та  утворюють матриці

    (16.6)

та

    (16.7)

відповідно. Через  та  тут та надалі будемо позначати вектори, які утворюють рядки матриць. В цих позначеннях шукану матрицю  запишемо у вигляді:

.                   (16.8)

 Неважко бачити, що матриця ця визначатиметься як розв’язок наступної матричної системи:    

 .        (16.9)

Транспонуючи (16.9) маємо:       

 .

Звідки робимо висновок, що

     ().    (16.10)

 Всяке -те () рівняння системи (16.10) дає розклад  - вектора по системі векторів . А це значить, що проекція вектора   () на ортогональне доповнення  до лінійної оболонки , натягненої на вектор-рядки  матриці рівна нулю. Другими словами: необхідною і достатньою умовою існування розв’язку кожного -го рівняння системи (16.10) є наступна:

              ().  (16.11)

Звідки

     (),

або

                 ().  (16.12)

За умови (16.12) загальний розв’язок системи (16.10) запишемо у вигляді:

 ,,               (16.13)

З врахуванням того, що                

з (16.12) знаходимо       .

Звідки:

    .   (16.14)

Таким чином, задача (16.1) по побудові матриці  перетворення спостережуваних вхідних векторів   у вихідні вектори  розв’язана. Необхідною і достатньою умовою істинності такого розв’язку є співвідношення (16.11). Розв’язок (16.14) буде однозначним (),  якщо

.     (16.15)

16.3. Задача ідентифікації дискретносумуючих перетворювачів. Розглянемо задачу побудови матриць  , які послідовність вхідних сигналів  для всякого  згідно (16.4) сумують у вихідний сигнал .

 Для розв’язання задачі позначимо через

     ,      

         () (16.16)

матричну та векторну функції дискретного аргументу  такі, що

,  

для , .

Після чого систему (16.4) стосовно -го спостерігача запишемо в наступному символічному представленні:

    ().   (16.17)

Останнє еквівалентне матричному рівнянню

 ,    (16.18)

в якому   матрична функція дискретного аргументу  така, що                   ;     

       (16.19)

       ,

а

        ().

Позначимо для зручності

;    

       (16.20)

 ,

де

    ();

   ().

В термінах введених позначень транспонована ідентифікаційна система (16.18) запишеться у вигляді

    ().   (16.21)

Система рівнянь (16.21) матиме розв’язок тоді і тільки тоді, коли (по аналогії з (16.11), (16.12))                            (16.22)

для всякого , де з врахуванням (16.19) та (16.20)                .

При цьому                  (16.23) для всякого , де  

 

довільна вектор-функція дискретного аргументу  така, що

      (; ),

а

.

Транспонуючи та об’єднуючи систему розв’язків (16.23) для всіх  знаходимо, що матрична функція , визначена ідентифікаційним рівнянням (16.18), задовольнятиме умові                              Ω,      (16.24)

де

матрична функція дискретного аргументу  така, що ,  , а

.

 Для випадку, коли

,                   (16.25)

множина Ω даватиме однозначний розв’язок   

                                   (16.26)

символічного матричного рівняння (16.18).

Виконуючи у співвідношеннях (16.24) – (16.26) перехід від матричних функцій , ,  до матриць , ,  () знаходимо, що елементи-матриці послідовності ідентифікаційних матриць розглядуваного нами перетворення (16.4) в загальному випадку (при виконанні (16.22)) задовольнятимуть умовам:              

              ().    (16.27)

При

                               (16.28)

      ().                 (16.29)

Зауважимо, що умовою (16.25) визначається повнота матриці-функції . В термінах її елементів це означає, що    .

16.4. Задача ідентифікації лінійноінтегруючих перетворювачів. Розглянемо задачу ідентифікації системи (16.2) інтегруючої розподілений на інтервалі  сигнал  в -му () спостереженні за нею у вихідний вектор .

Для того, щоб (як було сказано в пункті 16.1) при розв’язанні задачі побудови перетворюючої матричної функції  скористатися результатами ідентифікації дискретноінтегруючого перетворювача (16.4) інтервал  дискретизуємо точками  () такими, що , а також позначимо через                    

,      

матричні функції дискретного аргументу  такі, що , . Зауважимо, що тут та надалі

,

 .

Останнє дозволяє розв’язок розглядуваної задачі отримати при  з розв’язку ідентифікаційної задачі

,                   (16.30)

яку ми розв’язали в попередньому пункті.

Враховуючи сказане із співвідношень (16.27) – (16.29) знаходимо, що в загальному випадку                                      ,             (16.31)

де  - довільна інтегровна по  матриця розмірності , а

,   .

Визначена співвідношенням (16.31) матрична функція  буде розв’язком розглядуваної задачі тоді і тільки тоді, коли

       .                (16.32)

За умови, що

   ,

розв’язок задачі буде однозначним. При цьому

 .

16.5. Задача ідентифікації дискретнорозподільчих перетворювачів. Розглянемо задачу побудови послідовності матриць , які заданий в -му () вимірі вхідний сигнал  згідно (16.5) перетворюють в послідовність  вихідних сигналів.

Для розв’язання задачі позначимо через

   ,

            ()

матричну та векторну функції дискретного аргументу   такі, що  

,    

для , .

Після чого систему (16.5) стосовно -го спостерігача запишемо в наступному символічному представленні:

.                  (16.33)

Останнє еквівалентне матричному рівнянню

,     (16.34)

в якому

    

матрична функція дискретного аргументу  така, що

  ,                                 ,

а

      ().

Покладаючи

,   

та вводячи до розгляду векторні функції

 ,

 

дискретного аргументу  такі, що

,

,

транспоновану ідентифікаційну систему (16.34) запишемо у вигляді

   ().   (16.35)

Система рівнянь (16.35) матиме розв’язок тоді і тільки тоді, коли (знову ж по аналогії з (16.11), (16.12))

  ,  (16.36)

де .

При цьому             (16.37)

для всякого, де

  

довільна вектор-функція дискретного аргументу  така, що

   ,      ,    ,

а

.

Транспонуючи та об’єднуючи систему розв’язків (16.37) для всіх  знаходимо, що матрична функція , визначена ідентифікаційним рівнянням (16.33), задовольнятиме умові

,            (16.38)

де        

довільна матрична функція дискретного аргументу  така, що

.

За умови, коли

 ,     (16.39)

множина  задаватиме однозначний розв’язок

     (16.40)

символічного матричного рівняння (16.33).

Виконуючи у співвідношеннях (16.38) – (16.40) перехід від матричних функцій , ,  до матриць , ,  () знаходимо, що елементи-матриці послідовності ідентифікаційних матриць розглядуваного тут перетворення (16.33) в загальному випадку (при виконанні умови (16.36) для вибраного нами ) задовольнятимуть умовам:         (16.41)  для всякого.

При             

    ().                 (16.42)

 16.6. Задача ідентифікації лінійно-функціональних перетворювачів. Розглянемо задачу ідентифікації системи (16.3), якою стаціонарний в часі вхідний вектор    в  - му () спостереженні за системою перетворюється в розподілений на інтервалі  вихідний сигнал .

Для поширення результатів розглянутої тільки що ідентифікації системи (16.6) на систему (16.3) інтервал  дискретизуємо точками   такими, що  , а також позначимо через    ,   

матричні функції дискретного аргументу  такі, що  ,     .

Останнє дозволяє від розглядуваної неперервної по системи (16.3) перейти до дискретної системи вигляду (16.34), ідентифікаційний розв’язок якої нами вже побудований у вигляді (16.38). Звідки при  отримуємо, що             ,       (16.43)

де  - довільна інтегровна по  матриця розмірності , а .

Однозначність визначеного співвідношенням (16.43) розв’язку задачі, як і вище, буде визначатися умовою (16.42). При цьому       .     (16.44)

Зауважимо, що множина розв’язків (16.43), або один із них у формі (16.44), будуть існувати, коли (як це випливає з (16.36))

                (16.45)

для значення  та .

 

 

140

 Курс лекцій по моделюванню динаміки систем з розподіленими параметрами


 

А также другие работы, которые могут Вас заинтересовать

82614. Организация и проведение соревнований. Старт 99 KB
  Квалифицированная работа судейской бригады стартеров имеет очень важное значение для успеха всего соревнования по бегу. Её состав зависит от уровня и характера соревнований. Судья-стартер должен быть тактичным, спокойным, выдержанным, правильно ориентироваться в разметке стартов на беговой дорожке...
82615. Текстовые задачи на проценты 70 KB
  Цели: образовательная сформировать умение применять знания процентов при решении задач, связанных с банковскими расчетами; добиться усвоения учащимися понятия «сложный процентный рост»; отработать навыки использования формулы при вычислении суммы вклада.
82616. Виды и характер соревнований по легкой атлетике 91 KB
  Организация проведения и правила соревнований по легкой атлетике Виды и характер соревнований по легкой атлетике Соревнования по легкой атлетике проводятся на открытом воздухе стадион шоссе лесной массив и в закрытых помещениях спортивные манежи залы.
82617. Школа передвижений (с элементами легкой атлетики). Режим дня 565.5 KB
  Режим дня школьника это чередование труда и отдыха в определенном порядке. От того насколько правильно организован режим дня школьника зависит состояние здоровья физическое и психическое развитие работоспособность и успеваемость в школе.
82618. Возникновение Олимпийских игр 98.5 KB
  Античные Олимпийские игры. Олимпийские игры крупнейшие международные комплексные спортивные соревнования современности которые проводятся каждые четыре года. Как же оно всё-таки возникло это легендарное это удивительное явление под названием Олимпийские игры...
82619. История развития легкой атлетики 38 KB
  Зарождение легкоатлетического спорта берёт своё начало в глубокой древности. Первобытные люди приобретали навыки быстроты, выносливость и ловкости. Древний человек научился использовать в качестве метательного оружия разнообразные предметы: палку, острогу, копьё.
82620. Организация и судейство соревнований 92.5 KB
  Деятельность судейской коллегии по легкой атлетике Коллегия судей соответствующей федерации для проведения соревнований назначает главную судейскую коллегию ГСК которая состоит из главного судьи главного секретаря их заместителей и помощников в зависимости от ранга соревнований.
82621. Возрождение Олимпийских игр 374 KB
  По-настоящему древними Играми стали интересоваться лишь когда начались раскопки Олимпии спящей под многовековыми наслоениями. Олимпийские игры просто должны были состояться Однако дело ведь это очень сложное: целые горы организационной работы.
82622. Виды легкой атлетики и их характеристика 89 KB
  Легкая атлетика - вид спорта, объединяющий такие дисциплины как: ходьба, бег, прыжки (в длину, высоту, тройной, с шестом), метания (диск, копье, молот, и толкание ядра) и легкоатлетические многоборья. Один из основных и наиболее массовых видов спорта. Лёгкая атлетика относится к весьма консервативным видам спорта.