23032

Дискретний варіант побудови та дослідження загального розв’язку задачі моделювання динаміки систем з розподіленими параметрами

Лекция

Экономическая теория и математическое моделирование

Псевдообернені матриці та проблеми побудови загального розв’язку системи лінійних алгебраїчних рівнянь. З цією метою виділимо в матриці C r лінійно незалежних стовпців. Враховуючи що всякий стовпець матриці C може бути розкладений за системою векторів як за базисом матрицю C подамо у вигляді де вектор коефіцієнтів розкладу стовпця матриці С за базисом .10 ранг основної матриці дорівнює рангу розширеної.

Русский

2013-08-04

586 KB

1 чел.

27

 Стоян В.А.

Лекція 3. Дискретний варіант побудови та дослідження загального розв’язку задачі моделювання  динаміки систем з розподіленими параметрами

3.1. Постановка задачі та проблеми її розвязання. Повернемося до питання побудови моделюючих функцій u0(s) та uГ(s) в інтегральних співвідношеннях (1.14), (1.15), якими замикалася проблема переходу від диференціальної моделі динаміки системи у формі (1.1) – (1.4) до її інтегрального представлення у вигляді (1.9) – (1.13). При цьому обмежимося самим простим випадком, коли і початково-крайові умови (1.3) – (1.4) і моделюючі функції u0(s) та uГ(s) дискретизовані. Дискретизацію виконаємо як і в (1.22) точками:

 () – для функцій u0(s) (s,);

 () – для функцій uГ(s) (s,);

 () – для функцій (x) ;

  () для функції 

 .

Як показано в п. 1.3, проблема знаходження наборів

                                          (3.1)

та

                                         (3.2)

моделюючих функцій u0(s) та  при відомих значеннях

                           (3.3)

та

   (3.4)

функцій  та  зводиться (див. П.1.3.) до побудови та дослідження загального розвязку системи лінійних алгебраїчних рівнянь

                                                                            (3.5)

де

, або ;

, або

для початкової (задачі Коші), крайової та початково-крайової задач відповідно, а матриця С для кожної із задач визначена вище (формули (1.21), (1.27) та (1.28)). При цьому під “загальним розвязком” тут розуміється класичний розвязок, якщо він є (єдиний, або певний з множини розвязків), або найкраще наближення до нього (однозначне, або певне з множини можливих наближень), якщо точного розвязку не існує.

3.2. Псевдообернені матриці та проблеми побудови загального розв’язку системи лінійних алгебраїчних рівнянь. Зупинимося на проблемах обернення лінійних алгебраїчних систем (3.5), в якій для зручності будемо вважати, що  вимірна матриця, а y та u - заданий та шуканий L та M - вимірні вектори.

Відомо багато підходів до розв’язання задачі (3.5), яка може мати єдиний розв’язок, множину розв’язків, або зовсім їх не мати. Ми будемо виходити з методики, запропонованої та розвиненої  в [22].

Введемо до розгляду матрицю , псевдообернену до  таку, щоб

                      (3.6)

де

          (3.7)

Дослідимо властивості вектора , який надалі будемо називати псевдорозв’язком системи (3.5).

Для початку покажемо, що матриця  існує і може бути однозначно побудована.

З цією метою виділимо в матриці C r лінійно незалежних стовпців. Позначимо через  матрицю, утворену цими стовпцями. Враховуючи, що всякий стовпець матриці C може бути розкладений за системою векторів , як за базисом, матрицю C подамо у вигляді

,

де  - вектор коефіцієнтів розкладу  стовпця матриці С за базисом . Звідки , де

З врахуванням останнього розв’язок задачі (3.5) - (3.6) побудуємо в два етапи:

  1.  розв’яжемо задачу знаходження вектора  такого, щоб

                          (3.9)

  1.  знайдемо мінімальний за нормою вектор  такий, щоб

    .                      (3.10)

Задачі ці мають однозначний розв’язок: перша - як задача розкладу вектора  ; друга - тому, що для системи (3.10) ранг основної матриці дорівнює рангу розширеної.

При розв’язанні задачі (3.9) будемо виходити з того, що

.

Звідки

;

.         (3.11)

Розв’язок другої задачі знайдемо шляхом мінімізації функції Лагранжа

.

З врахуванням того, що для

,

при   з (3.10) знаходимо

.

Звідки

,

а шукане

.

З врахуванням (3.11) отримуємо

,                     (3.12)

де

.                    (3.13)

Звідси випливає, що має місце наступна теорема.

Теорема 3.1. Визначена згідно (3.6), (3.7) матриця , псевдо обернена до () – вимірної матриці , визначається співвідношенням (3.13), в якому - матриця, утворена  лінійно незалежними стовпцями матриці , а - матриця коефіцієнтів розкладу за ними всіх вектор-стовпчиків матриці .

Як було сказано вище, система (3.10) має розв’язок при любому. - це вектор коефіцієнтів розкладу вектора  по вектор-стовпцях матриці . Звідки заключаємо, що вектор y теж може бути довільним.

Питань не виникає, якщо розмірність  вектора  дорівнює кількості  векторів  (базису матриці ). Якщо ж , то однозначність та точність розв’язку системи

буде досягатися, якщо за вектор-стовпцями матриці  буде розкладатися - проекція вектора  на лінійну оболонку натягнуту на вектор-стовпці матриці . З врахуванням (3.11) заключаємо, що матриця , а отже і розв’язок системи (3.5) буде однозначним, якщо

.

Поскільки  лінійно незалежних вектор-стовпчиків матриці  є одночасно і лінійно незалежними вектор-стовпцями матриці С, то можемо сформулювати наступний наслідок .

Наслідок 3.1.  Проекція вектора  на лінійну оболонку, натягнену на вектор-стовпці матриці , визначається співвідношенням

.

З використанням сформульованої в наслідку 3.1 особливості псевдообернення системи (3.5) можемо побудувати ще один зручний для практичної реалізації алгоритм побудови , а отже і розв’язання задач (3.9), (3.10). Алгоритм запропонований М. Ф. Кириченком. Вперше він був опублікований в [22] і названий автором методом решетування.

Згідно [22]:

1) Виділимо з   лінійно  незалежних стовпчиків. Одержимо матрицю . Згідно розглянутого вище

;

2) Виділимо з  r лінійно незалежних рядків. З матриці  залишиться матриця , елементи якої належать одночасно виділеним  рядкам і r стовпцям. При цьому

і замість рівняння (3.10) на другому етапі розв’язання задачі побудови матриці  будемо розглядати рівняння

,                      (3.14)

де

;

3) розв’язок рівняння (3.14) такий, щоб

,

,

запишемо у вигляді

,

де

.                   (3.15)

Крім наведеного вище представлення (3.13) та (3.15) псевдооберненої матриці  відомі і інші [12] не менш важливі представлення. Ми зупинимося ще на одному з них, яке носить більше теоретичний характер і яке потрібне буде нам в подальшому викладі матеріалу.

3.3. Сингулярне представлення прямокутних матриць. Як було показано вище, всяку прямокутну матрицю C розмірності LM можна представити у вигляді добутку двох матриць C1 та C2 розмірності L*r та r*M відповідно, де r - ранг матриці C. Тобто

,

де сi(1)  лінійно незалежні стовпці матриці C, а   - рядки матриці C2 визначеної в (3.8). А це значить, що

                                                               (3.16)

Якщо ж вектори та  розкласти за системою ортонормованих векторів   та  відповідно, то представлення (3.16) матиме вигляд

.                                                                 (3.17)

Виникає природнє запитання: ”Як система ортонормованих векторів yi, , та чисел  повязана з матрицею C ?

Розглянемо CCTys . З врахуванням ортогональності векторів  та yi маємо:

   (3.18)

Аналогічно знаходимо, що

.                                            (3.19)

А це значить, що система векторів xi , yi та чисел   існує: вектори xi та yi є власними векторами для матриць CTC та CCT з власним значеннями рівними . Тобто представлення матриці C у вигляді (3.17), можливе хоча практично побудувати його не просто.

Виходячи з представлення (3.17) матриці C побудуємо аналогічне представлення і для матриці C+.

Згідно (3.13), де

,

знаходимо

                            (3.20)

.

3.4. Проекційні властивості псевдообернених матриць Представлення (3.17) та (3.20) матриць  та  дозволяють в рамках введених вище позначень записати та проілюструвати досить цікаві і потрібні для практики властивості псевдообернених матриць. Сформулюємо це у вигляді наступної теореми.

Теорема 3.2. Для () – вимірної матриці  такої, що для ортонормованих векторів , які є базисними для вектор-стовпчиків матриці , виконуються співвідношення (3.18), та вектора  матриці  та  є проекціями на лінійну оболонку , натягнену на вектор-стовпці матриці , та ортогональне доповнення до цієї оболонки відповідно.

Доведення. Для доведення теореми систему векторів  доповнимо системою ортонормованих векторів  ортогональних до . Тоді

,

а досліджувані в теоремі матриці

;                     (3.21)

.        (3.22)

Якщо розглянути

;                    (3.23)

,         (3.24)

то  є не що інше, як проекція вектора  на , а  є розклад вектора по системі векторів . Якщо , то цей розклад зрозумілий. Якщо ж розмірність вектора  більша , то представлення (3.23) буде давати розклад по  проекції вектора  на лінійну оболонку, натягнуту на вектори , а отже і на вектор стовпці матриці .

Тобто

.

Аналогічними міркуваннями, виходячи з (3.22), доводиться і друге твердження, теореми, згідно якого

.

Аналогічно доводиться  наступна теорема.

Теорема 3.3. Для () – вимірної матриці  такої, що для ортонормованих векторів , які є базисними для вектор-рядків  матриці  і для яких виконуються співвідношення (3.18), (3.19) та вектора  матриці  та  є проекційними на лінійну оболонку, натягнуту на вектор-рядки  матриці , та ортогональне доповнення до цієї оболонки відповідно.

3.5. Загальні розвязки системи лінійних алгебраїчних рівнянь. Сформульовані в теоремах 3.2 та 3.3 проекційні властивості матриць , , та  дозволяють зручно записати та дослідити загальний розвязок системи лінійних алгебраїчних рівнянь. Сформулюємо це у вигляді наступної теореми.

Теорема 3.4. Загальний розв’язок системи лінійних алгебраїчних рівнянь

                     (3.25)

де - - вимірна матриця, , , визначається формулою

,                                                            (3.26)

де -довільний вектор розмірності , C- матриця, псевдообернена до , а . Розвязок цей буде:

  1.  єдиним і точним при

;                     (3.27)

;

  1.  даватиме множину розвязків при

;                     (3.28)

;

3) єдиним псевдорозязком таким, що

       (3.29)

при

;          (3.30)

;

  1.  даватиме множину

                                             

псевдорозвязків з невязкою , визначеною співвідношенням (3.29) при

         (3.31)

.

Доведення. Будемо виходити з того, що згідно розглянутого вище розв’язок рівняння (3.25), якщо він існує, записується через псевдообернену матрицю  співвідношенням (3.12).

В загальному ж випадку

,                         (3.32)

де - довільний вектор розмірності  такий, що

.

А це значить, що вектор  мусить бути ортогональним до вектор-рядків матриці . Іншими словами кажучи, мусить належати ортогональному доповненню до лінійної оболонки натягненої на вектор-рядки матриці , а отже

 ,

що і доводить співвідношення (3.26).

Співвідношення (3.27), (3.28), (3.30), (3.31) стануть зрозумілими, якщо враховувати, що  є умовою невиродженості матриці , а  випливає з умови, щоб

,

що є умовою рівності нулю проекції вектора  на ортогональне доповнення до лінійної оболонки, натягненної на вектор-стовпці матриці . Останнє ж описує умову, за якою вектор  може бути розкладений за вектор-стовпцями матриці , тобто умовою, коли точно задовольняється рівняння (3.25).

3.6. Ще деякі представлення та залежності псевдообернених матриць. Сингулярне представлення матриць ,  у вигляді (3.17), (3.20) дозволяє довести ще дві корисні для практичного використання формули:

.                    (3.33)

Достовірність формули (3.33) перевіримо виходячи з (3.17) та (3.20). При цьому

;

.       (3.34)

Звідки

;

.

Зауваження. Представлення (3.34) матриці  з врахуванням (3.17) та (3.20) дозволяє заключити, що

.

А це значить, що

.

Звідки з врахуванням властивостей векторів   заключаємо, що  може мати значення «один», або «нуль»: «один» - коли розвязок (псевдорозвязок) системи (3.25) однозначний; «нуль» - коли цих розвязків (псевдорозвязків) множина.

Останнє дозволяє умову однозначності загального розвязку (3.26) системи лінійних алгебраїчних рівнянь (3.25) в умовах (3.27), (3.28), (3.30), (3.31) замінити наступною

,

або

.

26

Курс лекцій по моделюванню динаміки систем з розподіленими параметрами


 

А также другие работы, которые могут Вас заинтересовать

84073. Репродуктивная система человека 30.41 KB
  Репродуктивная система комплекс органов и систем которые обеспечивают процесс оплодотворения способствуют воспроизводству человека. Мужская репродуктивная система система органов расположенных снаружи тела около таза которые принимают участие в процессе репродукции. Репродуктивная система женщины состоит из органов расположенных преимущественно внутри тела в тазовой области.
84074. Половое созревание, регуляция полового созревания 33.51 KB
  Еще до появления первой менструации отмечается усиление функции гипофиза и яичников. В последние годы раскрыты новые механизмы становления и регуляции репродуктивной функции. Важная роль в регуляции репродуктивной функции принадлежит эндогенным опиатам энкефалины и их производные пре и проэнкефалины – лейморфин неоэндорфины динорфин которые оказывают морфиноподобное действие и были выделены в центральных и периферических структурах нервной системы в середине 1970х годов. Данные о роли нейротрансмиттеров и влиянии через них эндогенных...
84075. Терморегуляция, виды терморегуляции 31.19 KB
  Различают несколько механизмов отдачи тепла в окружающую среду. Излучение – отдача тепла в виде электромагнитных волн инфракрасного диапазона. Количество тепла рассеиваемого организмом в окружающую среду излучением пропорционально площади поверхности излучения площади поверхности тела не покрытой одеждой и градиенту температуры. При температуре окружающей среды 20с и относительной влажности воздуха 40–60 организм взрослого человека рассеивает путём излучения около 40–50 всего отдаваемого тепла.
84076. Терморегуляция у детей младшего возраста 31.18 KB
  Температура тела ребенка в первые месяцы жизни не вполне постоянна. Она может изменяться под влиянием различных факторов: охлаждения или перегревания тела приема пищи крика и так далее. Так у новорожденных на 1 кг массы тела приходится 700 см2 кожи у десятилетних детей 425 см2 а у взрослых 220 см2. Накопление тепла в организме способствует повышению температуры тела.
84077. Предмет и задачи анатомии и физиологии, предмет и задачи возрастной анатомии и физиологии 29.86 KB
  Физиология – наука о функциях живого организма как единого целого о процессах протекающих в нём и механизмах его деятельности. В настоящее время физиология и анатомия накопили огромный фактический материал. Это привело к тому что от физиологии и от анатомии отпочковываются две самостоятельные науки – это возрастная анатомия и возрастная физиология. Возрастная физиология – это наука которая изучает особенности процесса жизнедеятельности организма на разных этапах онтогенеза.
84078. Современные методы изучения организма. Клетка, строение животной клетки 33.92 KB
  Клетка строение животной клетки. Масса и длина тела окружность грудной клетки и талии обхват плеча и голени толщина кожножировой складки – все это и многое другое традиционно измеряют антропологи с помощью медицинских весов ростомера антропометра и других специальных приспособлений. В каждой клетке различают две основные части цитоплазму и ядро в цитоплазме в свою очередь содержатся органоиды мельчайшие структуры клетки обеспечивающие ее жизнедеятельность митохондрии рибосомы клеточный центр и др. В ядре перед делением...
84079. Ткани, органы и системы органов 30.93 KB
  Особенностью соединительной ткани является сильное развитие межклеточного вещества. К соединительной ткани относятся кровь лимфа хрящевая костная жировая ткани. Благодаря сокращению скелетных мышц становится возможным передвижение тела в пространстве; особое строение сердечной мышечной ткани обеспечивает одновременное сокращение больших участков сердечной мышцы. Структурной единицей нервной ткани является нервная клетка нейрон состоящий из тела овальной звездчатой или многоугольной формы и отходящих от него отростков.
84080. Общие принципы регуляции работы организма 22.35 KB
  Регуляция в живых организмах представляет собой совокупность процессов обеспечивающих необходимые режимы функционирования достижение определенных целей или полезных для организма приспособительных результатов. Процесс физиологической регуляции является основой самоудовлетворения потребностей живого организма.
84081. Эндокринная система, эндокринные железы и функции основных гормонов 31.16 KB
  Железа внутренней секреции производит гландулярные гормоны к которым относятся все стероидные гормоны гормоны щитовидной железы и многие пептидные гормоны. Диффузная эндокринная система представлена рассеянными по всему организму эндокринными клетками продуцирующими гормоны называемые агландулярными за исключением кальцитриола пептиды. Гормоны органические соединения вырабатываемые определенными клетками и предназначенные для управления функциями организма их регуляции и координации. Гормоны биологические активные вещества...