23034

Моделювання неперервної початково-крайової задачі динаміки систем з розподіленими параметрами

Лекция

Экономическая теория и математическое моделирование

Моделювання неперервної початковокрайової задачі динаміки систем з розподіленими параметрами 5. Постановка задачі та проблеми її розвязання. Розглянутий вище варіант постановки та розвязання проблеми моделювання початковокрайової задачі динаміки системи 1.5 Для того щоб методику розвязання дискретизованої задачі моделювання динаміки розглядуваної системи розвинуту в рамках лекції 3 успішно узагальнену далі лекція 4 на задачі моделювання дискретизованих початковокрайових умов неперервними функціями та поширити на задачу 5.

Русский

2013-08-04

355.5 KB

1 чел.

42

 Стоян В.А.

Лекція 5. Моделювання неперервної початково-крайової задачі динаміки систем з розподіленими параметрами

5.1. Постановка задачі та проблеми її розв’язання. Розглянутий вище варіант постановки та розв’язання проблеми моделювання початково-крайової задачі динаміки системи (1.1) – (1.4) будувався в припущенні, що початково-крайові умови (1.3), (1.4) мусять справджуватися точно (або наближено) в певних, наперед визначених, просторово-часових точках. Це дозволило побудувати та дослідити множини неперервних моделюючих функцій, які однозначно, або неоднозначно, точно, або з певними похибками моделюють дискретно задані початково-крайові умови (4.3), (4.4).

Можна, однак, навести ряд прикладів, коли специфіка процесу описуваного співвідношеннями (1.1) – (1.4) вимагає виконання початкових умов в усіх точках області, а крайових по всьому контуру, тобто, щоб вектор-функція стану y(s) визначалася умовами (1.3), (1.4):

                   (5.1)

            (5.2)

Враховуючи складність проблеми побудови неперервних функцій  та , якими б через складові  та  моделювався вплив на вектор-функцію  початково-крайових умов (5.1), (5.2), розглянемо задачу побудови значень

                    (5.3)

та

         (5.4)

моделюючих функцій  та  таких, щоб

                    (5.5)

Для того, щоб методику розв’язання дискретизованої задачі моделювання динаміки розглядуваної системи, розвинуту в рамках лекції 3, успішно узагальнену далі (лекція 4) на задачі моделювання дискретизованих початково-крайових умов неперервними функціями  та , поширити на задачу (5.5) введемо до розгляду наступні векторні та матричні функції:

                            (5.6)

 

         (5.7)

Це дозволяє співвідношення (5.5) переписати у вигляді

                             (5.8)

де

Останнє еквівалентне задачі обернення наступної системи функціональних рівнянь

                                                                       (5.9)

де з врахуванням (5.7)

       (5.10)

Зауважимо, що задача обернення рівнянь (5.9) згідно критерію (5.8) не є простою. За деяких співвідношень між матричною та векторною функціями  та  задача ця може мати розв’язок (однозначний, або множину). В загальному ж випадку можна розраховувати на наближене згідно (5.8) обернення.

Для побудови та дослідження множини можливих обернень рівнянь (5.9), а отже і побудови множини значень  та  моделюючих функцій  та  будемо виходити знову із співвідношень (3.26) – (3.30) отриманих нами при побудові та дослідженні розв’язків системи лінійних алгебраїчних рівнянь (3.25). Для цього розглянемо (при  та ) наступну систему:

                                                (5.11)

де при

Неважко бачити, що проблем обернення системи (5.11) нема. Розв’язок її, а також умови точності та однозначності розв’язку, випливають зі співвідношень (3.26) – (3.30). Однак проблемою є перехід від цього розв’язку до неперервного випадку, який відповідає рівнянням (5.9).

5.2. Блочнолінійні системи алгебраїчних рівнянь та їх загальний розв’язок. Для того, щоб перейти від дискретної системи (5.11) до її неперервного аналогу (5.9) врахуємо пов’язану з  та  дискретизаційну сітку для області , контуру Г та часу t. При цьому замість системи (5.11) будемо розглядати наступну:

            (5.12)

де ,   - крок дискретизації координат  в області  та на контурі Г відповідно), а

                            (5.13)

Для обернення системи (5.12) з використанням викладених в п.3.5 методів лінійної алгебри запишемо її у вигляді:

                                                                     (5.14)

де

                    (5.15)

               

матричні та векторні функції дискретного аргументу такі, що

при  і

при

Звідки згідно (3.26) знаходимо, що

                 (5.16)

визначатиметься співвідношенням

(5.17)

де  Останнє з врахуванням (5.15) дозволяє множину  значень  моделюючих функцій  та  записати у вигляді:

                            (5.18)

де

 

 (5.19)

Перш ніж записати умови точності та однозначності множини (5.18) дослідимо їх для цієї ж множини виходячи з представлення (5.17). Використовуючи співвідношення (3.26) – (3.30), наведені в п.3.5 для систем лінійних алгебраїчних рівнянь, знаходимо, що:

                        (5.20)

Умовою однозначності множини  буде:

                                                                     (5.21)

де  визначається згідно (5.19).

Якщо умова однозначності у формі (5.21) зручна для використання, то цього не скажеш за співвідношення (5.20), яким визначається помилка в оберненні рівнянь (5.14), а отже і в розв’язанні задачі (5.13). Зауважимо, однак, що вираз (5.21) спрощується з врахуванням визначення (5.15) для матричних та векторних функцій  та . Якщо позначити через

                 (5.22)

то

.                                                           (5.23)

5.3. Загальний розв’язок задачі моделювання неперервних початково-крайових умов. Враховуючи, що побудований та досліджений вище розв’язок (5.18) системи (5.14) (а отже і системи (5.11)) є допоміжним для побудови та дослідження загального розв’язку системи (5.9) (а отже і сформульованої на початку задачі (5.5)) виконаємо перехід до останньої.

Спрямовуючи до нескінченності значення  та  у співвідношеннях (5.18), (5.19), (5.22), заключаємо, що загальний розв’язок задачі (5.5) визначатиметься співвідношенням (5.18), в якому

       (5.24)

З (5.23) з врахуванням (5.22) при  знаходимо, що помилки в моделюванні початково-крайових умов (5.1), (5.2) вектором  значень моделюючих функцій  та  визначатимуться співвідношенням :

       (5.25)

в якому

               (5.26)

Умова однозначності множини  залишиться незмінною:

                                                                     (5.27)

5.4. Псевдообернення матричних рядків-функцій і розв’язок задачі моделювання початково-крайових умов. Методика побудови та дослідження загального розв’язку задачі (5.5) моделювання початково-крайових умов (5.1), (5.2) векторами (5.3), (5.4) значень моделюючих функцій  та  грунтувалася на використанні матричних рядків-функцій , визначених співвідношеннями (5.13), (5.15).

Спрямовуючи до нескінченності значення  та , у визначенні цієї функції, введемо до розгляду матричні та векторні функції:

.

Позначивши через

граничне значення матриці, псевдооберненої до  знаходимо, що

                                                (5.28)

Останнє дозволяє матричну функцію  назвати псевдооберненою до матричної функції .

Після чого зі співвідношення (5.17), подаючи його у вигляді

 

заключаємо, що вектор  значень функцій  та , якими через складові  та  функції стану:

моделюється вплив на неї початково-крайових умов (5.1), (5.2), визначається співвідношенням:

   (5.29)

де інтегрування ведеться по області зміни змінних х в  та s – в , а

Невизначеність інтегрування в (5.29) зникає, якщо розглядати частинні випадки розв’язуваної тут задачі, а саме:

а) моделювання початкових умов в задачі Коші;

б) моделювання крайових умов в задачі усталеної динаміки системи.

В першому випадку , у другому – . Крім того для кожного з цих випадків  та  відповідно. А це значить, що

а) вектор  значень функції , яким моделюються початкові умови (5.1), визначається співвідношенням:

в) вектор  значень функцій , яким моделюються крайові умови (5.2), визначається співвідношенням:

При цьому з врахуванням визначення псевдооберненої матричної функції, яке випливає з (3.6),

Неважко зрозуміти, що для розглядуваної окремо задачі Коші та крайової задачі спростяться і умови точності та однозначності їх розв’язання. Для кожної з цих задач вони будуть наступними:

а) для задачі Коші:

б) для крайової задачі:

де  - матриці псевдообернені до

 

та

 

відповідно.

41

Курс лекцій по моделюванню динаміки систем з розподіленими параметрами


 

А также другие работы, которые могут Вас заинтересовать

42672. ИССЛЕДОВАНИЕ РЕЖИМОВ РАБОТЫ АНАЛОГОВЫХ ЭЛЕМЕНТОВ ЭЛЕКТРОННОГО БЛОКА И РАСЧЕТ КОЭФФИЦИЕНТОВ Я НАГРУЗОК ВСЕХ РАДИОЭЛЕМЕНТОВ БЛОКА 287 KB
  На передней панели БЭ размещен предохранитель элемент сигнализации регулятор выходного напряжения гнезда выходного стабилизированного напряжения. К первичной обмотке трансформатора через разъем и предохранитель подведено напряжение 220В 50Гц а также подключена цепочка сигнализации поданного напряжения. Структурная схема Для транзисторов записать предельно допустимые напряжения Uкэ и предельно допустимый ток коллектора. Ее экспериментально определяют следующим образом измеряют падение напряжения на резисторе вольтметром в вольтах.
42673. Изучение термоэлектрического метода измерения температур. Введение компенсации температуры холодных спаев термопары 101 KB
  Подключаем термопару градуировки ХА к измерительному прибору. Опускаем ее в измеряемую среду. Измеряем термо- ЭДС ЕАВ(tt0’)в соответствии с «Порядком работы с образцовым прибором ПП 63». Результат записываем в таблицу №1 п.1.
42674. Изучение работы жидкостного U – образного манометра и комплекта приборов для измерения давления пневматической ветви ГСП 359.5 KB
  Березники 2003 Цель работы в процессе выполнения лабораторной работы студенты закрепляют знания по разделам Измерение давления и Дистанционная передача сигнала теоретического курса Технологические измерения и приборы; студенты знакомятся с принципом действия устройством измерительного пневматического преобразователя разности давления 13ДД11 в комплекте с вторичным прибором РПВ4. Величина давления контролируется по Uобразному манометру. измеряем давление на выходе из измерительного преобразователя 13ДД11 по образцовому...
42675. Изучение конструкции и поверки измерительного преобразователя давления типа "Сапфир – 22ДИ" 35.5 KB
  Березники 2003 Цель работы ознакомиться с принципом действия и конструкцией измерительного преобразователя типа Сапфир22ДИ; выполнить проверку измерительного преобразователя типа Сапфир22ДИ; приобрести навыки в определении давления при помощи измерительных преобразователей типа Сапфир. Стенды предназначены для проведения лабораторных работ по поверке автоматического миллиамперметра КСУ2 в комплекте с преобразователем давления Сапфир22ДИ. На втором стенде установлены автоматический миллиамперметр КСУ2 клеммы Миллиамперметр...
42676. Изучение конструкции и поверки вторичного прибора РП160 40.5 KB
  Цель работы ознакомление с работой измерительной системы измерения температуры в комплекте пирометр сопротивления заменён магазином сопротивления нормирующий преобразователь НПСЛ вторичный прибор РП160. Порядок проведения работы: Ознакомились со схемой подключения магазина сопротивления нормирующего преобразователя вторичного прибора; Установили магазином сопротивления сопротивление 4171 атм. соответствующее температуре 50С значение температуры считали по шкале прибора РП160; Рассчитали значение...
42677. Изучение и исследование термоэлектрического метода измерения температур 96 KB
  При этом студенты овладевают методикой поверки автоматического потенциометра КСП4 в комплекте с образцовым потенциометром УПИП60М градуировки шкалы. магазин сопротивлений R4 R10 и клеммы для подключения образцового потенциометра УПИП60М. Поверка автоматического потенциометра КСП4. Для поверки градуировки шкалы автоматического потенциометра КСП4 собирают схему по рисунку.
42678. Изучение работы жидкостного U – образного манометра и комплекта приборов для измерения давления пневматической ветви ГСП 403.5 KB
  Березники 2007 Цель работы в процессе выполнения лабораторной работы студенты закрепляют знания по разделу Измерение давления и Дистанционная передача сигнала измерительной информации теоретического курса Технические измерения и приборы. Студенты знакомятся с принципом действия устройством преобразователя измерительного разности давления пневматического 13ДД11 в комплекте с вторичным прибором РПВ4. Стенд предназначен для выполнения лабораторной работы по изучению работы измерительного преобразователя разности давления...
42680. Исследование процесса испытания конструкционных материалов при случайном режиме нагружения 278 KB
  Ознакомиться c основными процедурами, предшествующим установлению ресурса ВС; методами схематизации процессов нагружения. Оформить отчет №1 по лабораторной работе в виде рукописного конспекта, с необходимыми иллюстрациями. В отчете дайте развернутые ответы на все вопросы, которые приведены ниже.