23037

Дослідження та оптимізація структури дискретизованих динамічних систем

Лекция

Экономическая теория и математическое моделирование

вказувалося що структура матриці С та векторів визначається вибором точок розміщення спостерігачів та керувачів системи проблеми оптимального розміщення яких будуть розвязані якщо будуть знайдені явні залежності матриці від елементів множин координат спостерігачів та координат керувачів. Будуть побудовані аналітичні залежності елементів матриці від довільного елемента множини та елемента множини а також формули диференціювання матриці по цих елементах. В процесі розвязання цієї проблеми будуть побудовані формули...

Русский

2013-08-04

335.5 KB

0 чел.

64

 Стоян В.А.

Лекція 8. Дослідження та оптимізація структури дискретизованих динамічних систем

8.1. Постановка задачі та проблеми її розв’язання. Одним із варіантів розв’язання задач моделювання зовнішньо-динамічної обстановки, в якій функціонує система з розподіленими параметрами є варіант, коли дискретизуються її входи-виходи. Другими словами: варіант цей передбачає, що дискретизовані зовнішньо-динамічні збурення моделюються дискретизованими моделюючими функціями. При цьому проблема знаходження останніх зводиться до обернення системи лінійних алгебраїчних рівнянь (див. п.3.1.) вигляду

                                   (8.1)

де Сзадана прямокутна матриця розмірності LM, -відомий вектор, а - шуканий розв’язок.

Вище (див. п.7.4.) вказувалося, що структура матриці С та векторів ,  визначається вибором точок розміщення спостерігачів та керувачів системи, проблеми оптимального розміщення яких будуть розв’язані, якщо будуть знайдені явні залежності матриці  від елементів множин  (координат спостерігачів) та  (координат керувачів). Питання побудови цих залежностей ми і вивчимо нижче.

Будуть побудовані аналітичні залежності елементів матриці  від довільного  елемента множини  та елемента  множини , а також формули диференціювання матриці  по цих елементах.

В процесі розв’язання цієї проблеми будуть побудовані формули обернення прямокутних матриць розширених рядком, або стовпчиком з явною аналітичною залежністю результатів такого обернення від початкової матриці та вектор-стовпця (чи вектор-рядка), яким ця матриця розширена.

Поскільки розширення матриці С вектор-рядком означає появу в досліджуваній системі нового спостерігача, а розширення цієї ж матриці новим вектор-стовпцем означає появу в цій же системі нового керувача, то будуть створені умови для дослідження динамічних систем (в дискретизованому варіанті), які допускають розширення (звуження) мережі спостерігачів (керувачів) системи.

8.2. Формули Гревіля обернення прямокутних матриць. Будемо виходити з того, що для довільної прямокутної матриці С розмірності  відома матриця  обернена (псевдообернена) до неї. За умови, що матриця С розширена рядком , маємо

 (8.2)

де , . Доведення формули (8.2) виконаємо використовуючи методику М.Ф. Кириченка та отриманий вище загальний розв’язок (3.26) систем лінійних рівнянь (8.1).

Для доведення формули (8.2) для випадку, коли , а це умова лінійної незалежності вектор-рядка  з рядками матриці С, розглянемо систему

  

яку для зручності запишемо у вигляді

                                     (8.3)

Розв’язок системи (8.3) подамо у вигляді

 

при цьому будемо вимагати, щоб

  

З врахуванням того факту, що , з умови, щоб

            (8.4)

знаходимо

(8.5) Підставивши (8.5) в (8.4) отримаємо тотожність

З умови

заключаємо, що w=0, а отже

Після чого знаходимо

Приводячи останнє співвідношення до вигляду

отримуємо

Звідки і отримаємо першу частину формули (8.2).

Для доведення другої частини формули знайдемо . Для цього будемо виходити з матричного рівняння

яке еквівалентне наступній системі

              (8.6)

Розв’язок системи (8.6), який при довільному  мінімізував би нев’язку u запишемо у вигляді

        (8.7)

Параметр α знайдемо з умови

З умови де

знаходимо

          (8.8)

З врахуванням (8.8 ) з (8.7) знаходимо те

при якому мінімізується нев’язка системи (8.6) і досягається мінімум розв’язку її. Звідки

       (8.9)

З врахуванням того факту, що

        (8.10)

з (8.9) знаходимо другу частину формули (8.2).

Інші варіанти формули (8.2) розглядати не будемо. Зауважимо, однак, що виходячи з (8.2) та (8.9) можна побудувати формулу обернення матриці С розширеної стовпцем а, тобто матриці . З врахуванням (8.9), (8.10) запишемо спочатку цю формулу для матриці . Неважко бачити, що вона буде наступною:

       (8.11)

З отриманого співвідношення з врахуванням того, що

для довільної прямокутної матриці С знаходимо:

       (8.12)

де

Формули (8.2) та їх узагальнення у формі (8.12) дозволяють побудувати рекурентні обчислювальні алгоритми для обернення прямокутних матриць: відштовхуючись від оберненої матриці невеликої розмірності (можливо навіть прямокутної) шляхом розширення останньої на один рядок (стовпчик) з використанням формул (8.2) та (8.12) можна побудувати обернення прямокутної матриці довільної розмірності.

8.3. До реалізації алгоритмів оптимізації розміщення входів-виходів в дискретизованій лінійній динамічній системі. Як відзначалося в п.8.1, проблема оптимізації розміщення спостерігачів-керувачів за системою, яка зводиться до обернення системи (8.1), буде розв’язана, якщо будуть побудовані формули диференціювання матриці  по координатах  та  спостерігачів та керувачів відповідно.

Для цього будемо виходити з того, що залежність матриці  від координати  визначається, як це видно з визначення (1.22), k-тим рядком матриці . Виділимо тому внесок цього рядка в аналітичне представлення матриці .

Останнє можна зробити скориставшись формулою Гревіля (8.2) для обернення матриці

       (8.13)

де - матриця  без k-го рядка,  множина точок  без k-го елемента, а - k-тий рядок, яким визначається залежність матриці  від k-го елемента множини .

Для того, щоб зручно записати формулу Гревіля до матриці , врахуємо, що k- тий рядок матриці

де - функція Гріна розглядуваної задачі. Далі виконаємо наступні послідовні перетворення формули (8.2) стосовно матриці (8.13)

           

де

Враховуючи, що

 

згідно (8.14) знаходимо

 

Після чого формулу Гревіля (8.2) стосовно матриці (8.13) запишемо у вигляді

    (8.15)

де  

Позначивши через  стовпці матриці  будемо  мати, що

 

Звідки

,

де  - l –стовпець матриці, або l -елемент вектора в залежності від контексту.

А це значить, що можна знайти похідні від стовпчиків (а, отже, і елементів) матриці  Вони будуть наступними:

.

Побудуємо аналітичні залежності похідних від елементів матриці  по k-тому елементу множини . Для цього позначимо через цей елемент,  -множину  без k-го елемента. Крім того, як і вище, позначимо через

   

k-ий стовпець матриці , а через - матрицю  без k-го  стовпця.

Для того, щоб побудувати аналітичні залежності рядків матриці

     (8.17)

від  застосуємо формулу Гревіля до матриці

       (8.18)

маючи на увазі, що

      (8.19)

По аналогії з (8.14) виконаємо це послідовно. Матимемо:

 

       (8.20)

Записуючи, з врахуванням (8.18), формулу Гревіля стосовно матриці (8.17), отримаємо

де

Звідки з врахуванням (8.17), (8.19) знаходимо

 (8.22)

     (8.23)

,

де, як і вище, -стовпець матриці, або m-елемент вектора в залежності від контексту.

Виходячи з (8.22), (8.23) знаходимо і похідні від рядків   (а, отже, і елементів) матриці  по  Вони будуть наступними:

 

де, як і вище,  елемент вектора .

Таким чином побудовані формули диференціювання матриці  по координатах спостерігачів  та керувачів  а отже можуть бути реалізовані градієнтні процедури по оптимізації їх розміщення згідно критерію (7.10), (7.21), а саме:

 

65

Курс лекцій по моделюванню динаміки систем з розподіленими параметрами


 

А также другие работы, которые могут Вас заинтересовать

51116. Метрологическая надежность средств измерений 427.81 KB
  Метрологической надежностью называют способность СИ сохранять установленное значение метрологических характеристик в течение заданного времени при определенных режимах и условиях эксплуатации.
51117. Исследование частотных характеристик типовых динамических звеньев 24.84 KB
  Цель работы: исследование амплитудных и фазовых частотных характеристик типовых динамических звеньев. Задачи: Ознакомиться с программой для исследования амплитудной частотной АЧХ и фазовой частотной ФЧХ характеристик типовых динамических звеньев. Произвести снятие частотных характеристик для различных значений параметров.
51119. Реєстрація сигналів в MatLAB 613.88 KB
  Прочитати за допомогою функції load в робочу область сигнал ЕКГ, отриманий з допомогою комп’ютерного електрокардіографа та збережений у mat-файлі. Вивести графік, позначити вісі. (файл архіву ECG_rec.rar на сайті, обрати сигнал згідно номеру за списком; ЕКГ дискретизована з частотою 400 Гц, значення напруги в мілівольтах отримується діленням величин відліків на 500). Визначити (програмно) тривалість записаного сигналу.
51120. Исследование устойчивости системы автоматического регулирования с использованием критериев Гурвица и Михайлова 73.21 KB
  По критерию Михайлова система 1 устойчива график начинается на положительной вещественной полуоси проходит против часовой стрелки 3 квадранта система 2 неустойчива график проходит через 3 квадранта но не против часовой стрелки система 3 устойчива график проходит через точку 00. для системы третьего порядка критерий Гурвица сводится к положительности всех...
51121. Моделювання лінійних систем в часовій та частотній області 500.67 KB
  Сформувати два синусоїдальних сигнали частоти 3 та 20 Гц тривалістю1 с. Проілюструвати властивість адитивності системи, визначивши реакціюсистеми спочатку на кожний з сигналів окремо, а потім на суму цих сигналів.Проілюструвати властивість однорідності системи.
51122. Разработка программы с использованием элементов Radiobutton, Button, Listbox 77.03 KB
  Задание на работу: Разработать программу с использованием элементов Rdiobutton Button Listbox. Предметная область фотопрокат. Код программы (файл Form1.cs)...
51123. Исследование устойчивости системы автоматического регулирования с использованием критерия Найквиста 50.13 KB
  В ходе лабораторной работы был изучен критерий устойчивости Найквиста. Получены АФЧХ разомкнутых систем с астатизмом и без, переходные характеристики замкнутых систем с астатизмом и без. По полученным характеристикам была определена устойчивость систем.