23037

Дослідження та оптимізація структури дискретизованих динамічних систем

Лекция

Экономическая теория и математическое моделирование

вказувалося що структура матриці С та векторів визначається вибором точок розміщення спостерігачів та керувачів системи проблеми оптимального розміщення яких будуть розвязані якщо будуть знайдені явні залежності матриці від елементів множин координат спостерігачів та координат керувачів. Будуть побудовані аналітичні залежності елементів матриці від довільного елемента множини та елемента множини а також формули диференціювання матриці по цих елементах. В процесі розвязання цієї проблеми будуть побудовані формули...

Русский

2013-08-04

335.5 KB

0 чел.

64

 Стоян В.А.

Лекція 8. Дослідження та оптимізація структури дискретизованих динамічних систем

8.1. Постановка задачі та проблеми її розв’язання. Одним із варіантів розв’язання задач моделювання зовнішньо-динамічної обстановки, в якій функціонує система з розподіленими параметрами є варіант, коли дискретизуються її входи-виходи. Другими словами: варіант цей передбачає, що дискретизовані зовнішньо-динамічні збурення моделюються дискретизованими моделюючими функціями. При цьому проблема знаходження останніх зводиться до обернення системи лінійних алгебраїчних рівнянь (див. п.3.1.) вигляду

                                   (8.1)

де Сзадана прямокутна матриця розмірності LM, -відомий вектор, а - шуканий розв’язок.

Вище (див. п.7.4.) вказувалося, що структура матриці С та векторів ,  визначається вибором точок розміщення спостерігачів та керувачів системи, проблеми оптимального розміщення яких будуть розв’язані, якщо будуть знайдені явні залежності матриці  від елементів множин  (координат спостерігачів) та  (координат керувачів). Питання побудови цих залежностей ми і вивчимо нижче.

Будуть побудовані аналітичні залежності елементів матриці  від довільного  елемента множини  та елемента  множини , а також формули диференціювання матриці  по цих елементах.

В процесі розв’язання цієї проблеми будуть побудовані формули обернення прямокутних матриць розширених рядком, або стовпчиком з явною аналітичною залежністю результатів такого обернення від початкової матриці та вектор-стовпця (чи вектор-рядка), яким ця матриця розширена.

Поскільки розширення матриці С вектор-рядком означає появу в досліджуваній системі нового спостерігача, а розширення цієї ж матриці новим вектор-стовпцем означає появу в цій же системі нового керувача, то будуть створені умови для дослідження динамічних систем (в дискретизованому варіанті), які допускають розширення (звуження) мережі спостерігачів (керувачів) системи.

8.2. Формули Гревіля обернення прямокутних матриць. Будемо виходити з того, що для довільної прямокутної матриці С розмірності  відома матриця  обернена (псевдообернена) до неї. За умови, що матриця С розширена рядком , маємо

 (8.2)

де , . Доведення формули (8.2) виконаємо використовуючи методику М.Ф. Кириченка та отриманий вище загальний розв’язок (3.26) систем лінійних рівнянь (8.1).

Для доведення формули (8.2) для випадку, коли , а це умова лінійної незалежності вектор-рядка  з рядками матриці С, розглянемо систему

  

яку для зручності запишемо у вигляді

                                     (8.3)

Розв’язок системи (8.3) подамо у вигляді

 

при цьому будемо вимагати, щоб

  

З врахуванням того факту, що , з умови, щоб

            (8.4)

знаходимо

(8.5) Підставивши (8.5) в (8.4) отримаємо тотожність

З умови

заключаємо, що w=0, а отже

Після чого знаходимо

Приводячи останнє співвідношення до вигляду

отримуємо

Звідки і отримаємо першу частину формули (8.2).

Для доведення другої частини формули знайдемо . Для цього будемо виходити з матричного рівняння

яке еквівалентне наступній системі

              (8.6)

Розв’язок системи (8.6), який при довільному  мінімізував би нев’язку u запишемо у вигляді

        (8.7)

Параметр α знайдемо з умови

З умови де

знаходимо

          (8.8)

З врахуванням (8.8 ) з (8.7) знаходимо те

при якому мінімізується нев’язка системи (8.6) і досягається мінімум розв’язку її. Звідки

       (8.9)

З врахуванням того факту, що

        (8.10)

з (8.9) знаходимо другу частину формули (8.2).

Інші варіанти формули (8.2) розглядати не будемо. Зауважимо, однак, що виходячи з (8.2) та (8.9) можна побудувати формулу обернення матриці С розширеної стовпцем а, тобто матриці . З врахуванням (8.9), (8.10) запишемо спочатку цю формулу для матриці . Неважко бачити, що вона буде наступною:

       (8.11)

З отриманого співвідношення з врахуванням того, що

для довільної прямокутної матриці С знаходимо:

       (8.12)

де

Формули (8.2) та їх узагальнення у формі (8.12) дозволяють побудувати рекурентні обчислювальні алгоритми для обернення прямокутних матриць: відштовхуючись від оберненої матриці невеликої розмірності (можливо навіть прямокутної) шляхом розширення останньої на один рядок (стовпчик) з використанням формул (8.2) та (8.12) можна побудувати обернення прямокутної матриці довільної розмірності.

8.3. До реалізації алгоритмів оптимізації розміщення входів-виходів в дискретизованій лінійній динамічній системі. Як відзначалося в п.8.1, проблема оптимізації розміщення спостерігачів-керувачів за системою, яка зводиться до обернення системи (8.1), буде розв’язана, якщо будуть побудовані формули диференціювання матриці  по координатах  та  спостерігачів та керувачів відповідно.

Для цього будемо виходити з того, що залежність матриці  від координати  визначається, як це видно з визначення (1.22), k-тим рядком матриці . Виділимо тому внесок цього рядка в аналітичне представлення матриці .

Останнє можна зробити скориставшись формулою Гревіля (8.2) для обернення матриці

       (8.13)

де - матриця  без k-го рядка,  множина точок  без k-го елемента, а - k-тий рядок, яким визначається залежність матриці  від k-го елемента множини .

Для того, щоб зручно записати формулу Гревіля до матриці , врахуємо, що k- тий рядок матриці

де - функція Гріна розглядуваної задачі. Далі виконаємо наступні послідовні перетворення формули (8.2) стосовно матриці (8.13)

           

де

Враховуючи, що

 

згідно (8.14) знаходимо

 

Після чого формулу Гревіля (8.2) стосовно матриці (8.13) запишемо у вигляді

    (8.15)

де  

Позначивши через  стовпці матриці  будемо  мати, що

 

Звідки

,

де  - l –стовпець матриці, або l -елемент вектора в залежності від контексту.

А це значить, що можна знайти похідні від стовпчиків (а, отже, і елементів) матриці  Вони будуть наступними:

.

Побудуємо аналітичні залежності похідних від елементів матриці  по k-тому елементу множини . Для цього позначимо через цей елемент,  -множину  без k-го елемента. Крім того, як і вище, позначимо через

   

k-ий стовпець матриці , а через - матрицю  без k-го  стовпця.

Для того, щоб побудувати аналітичні залежності рядків матриці

     (8.17)

від  застосуємо формулу Гревіля до матриці

       (8.18)

маючи на увазі, що

      (8.19)

По аналогії з (8.14) виконаємо це послідовно. Матимемо:

 

       (8.20)

Записуючи, з врахуванням (8.18), формулу Гревіля стосовно матриці (8.17), отримаємо

де

Звідки з врахуванням (8.17), (8.19) знаходимо

 (8.22)

     (8.23)

,

де, як і вище, -стовпець матриці, або m-елемент вектора в залежності від контексту.

Виходячи з (8.22), (8.23) знаходимо і похідні від рядків   (а, отже, і елементів) матриці  по  Вони будуть наступними:

 

де, як і вище,  елемент вектора .

Таким чином побудовані формули диференціювання матриці  по координатах спостерігачів  та керувачів  а отже можуть бути реалізовані градієнтні процедури по оптимізації їх розміщення згідно критерію (7.10), (7.21), а саме:

 

65

Курс лекцій по моделюванню динаміки систем з розподіленими параметрами


 

А также другие работы, которые могут Вас заинтересовать

72668. Многоэтажное промышленное здание с неполным каркасом 595.33 KB
  Ребристую предварительно напряженную плиту армируют стержневой арматурой класса А-VI с механическим натяжением на упоры форм. К трещиностойкости плиты предъявляют требования III - ей категории. Изделие подвергают тепловой обработке при атмосферном давлении.
72670. Принятие покупочных решений индивидуальным потребителем 500.64 KB
  Актуальность работы состоит также и в том, что изучение спроса играет огромную роль в развитии предприятия и поддержания его конкурентоспособности, причем на всех уровнях: и на микро, и на макро, что особенно важно в условиях развития нашего рынка.
72673. Оценка стоимости нежилого торгового помещения (склад) с целью продажи 97.69 KB
  Неспециализированная недвижимость – это недвижимость, на которую существует всеобщий спрос, и которая обычно покупается, продается или арендуется на открытом рынке для того, чтобы использовать ее для существующих или аналогичных целей, или в качестве инвестиции, или для развития и освоения.
72674. Анализ обеспеченности здания техническими средствами и способами пожаротушения и предотвращения распространения пожара 428 KB
  Основной проблемой пожарной безопасности здания является приведения, изначальной пожароопасности объекта в такое состояние, при котором исключается возможность потери на объекте, а в случае возникновения пожара, обеспечивается защита людей и материальных ценностей от опасных факторов пожара.
72675. Проект информационной системы для работы с реляционной базой данных активного сетевого оборудования 531.48 KB
  Целью курсового проекта является приобретение практических навыков в использовании полученных знаний при разработке баз данных, закрепление основных теоретических положений курса, получение более детального представления о взаимодействии основных компонент банка данных в процессе обработки информации.
72676. Улучшение параметров транзисторного стабилизатора с защитой от КЗ с током нагрузки от 3А 512.42 KB
  При перегрузке входа стабилизатора к участку эмиттер-коллектор регулирующих транзисторов будет приложено полное входное напряжение. Поэтому, для повышения надежности данной схемы, максимально допустимое напряжение применяемых транзисторов должно быть, по крайней мере, в 1.5 раза...