23038

Оптимізаційні методи в задачах моделювання дискретних початково-крайових умов

Лекция

Экономическая теория и математическое моделирование

Постановка задачі та проблеми її розвязання. Поставлені вище задачі а також запропоновані там алгоритми їх розвязання досить широкі і можуть бути використані для оптимізації розміщення входіввиходів довільної лінійної системи в тому числі і для розвязання задачі оптимізації розміщення спостерігачівкерувачів при моделюванні дискретизованих початковокрайових умов дискретно розміщеними фіктивними зовнішньодинамічними збуреннями. Більш точною і більш природною постановкою задачі моделювання дискретизованих початковокрайових умов є...

Русский

2013-08-04

325 KB

0 чел.

74

 Стоян В.А.

Лекція 9. Оптимізаційні методи в задачах моделювання дискретних початково-крайових умов

9.1. Постановка задачі та проблеми її розв’язання. Поставлені вище задачі, а також запропоновані там алгоритми їх розв’язання досить широкі, і можуть бути використані для оптимізації розміщення входів-виходів довільної лінійної системи, в тому числі і для розв’язання задачі оптимізації розміщення спостерігачів-керувачів при моделюванні дискретизованих початково-крайових умов дискретно розміщеними фіктивними зовнішньо-динамічними збуреннями.

Більш точною і більш природною постановкою задачі моделювання дискретизованих початково-крайових умов є варіант, коли моделюючі функції неперервні в області зміни своїх аргументів. Постановка цієї задачі зроблена в п. 4.1. В наступних пунктах лекції 4 показано, що розв’язання задачі зводиться до обернення системи інтегральних рівнянь вигляду

                                                            (9.1)

де  – дискретизований початково-крайовий стан системи,  – вектор-функція, якою цей стан моделюється, а  – матрична вектор-функція, яка через функцію Гріна пов’язана зі специфікою розглядуваної системи (область інтегрування залежить від постановки конкретної задачі).

Враховуючи, що матрична вектор-функція  суттєво залежить (див. п. 4.1) від точок спостережень  за системою, а також те, що функція ця впливає на точність обернення співвідношень (9.1), в п. 7.2 була поставлена задача оптимізації вибору точок спостереження за системою з умови, щоб

                     (9.2)

де  – множина точок спостереження за системою.

В п. 7.5 запропоновані градієнтні процедури розв’язання задачі (9.2). Там же вказувалось, що процедури ці будуть реалізовані, якщо будуть побудовані аналітичні залежності похідних по  від матричного рядка-функції  – псевдооберненого до матричного стовпця-функції

Для побудови аналітичних залежностей  від  , а отже, і для розв’язання проблеми диференціювання  по , нижче буде запропонований підхід, що грунтується на узагальненнях формул Гревіля на матричні стовпці-функції

9.2. Формули Гревіля для матричних стовпців-функцій. Як і в п. 4.2 лекції 4, в якій будувався загальний розв'язок системи вигляду (9.1), розглянемо спочатку дискретизований варіант системи, поданий співвідношеннями (4.9), а саме

                                   (9.3)

де  – крок дискретизації інтервалу (області) інтегрування в (9.1). Як і в п. 4.2 введемо дорозгляду матричний рядок – функцію дискретного аргументу

  

таку, що

 

;

Зауважимо, що як для функцій неперервного, так і для функцій дискретного аргументу розуміється неявна залежність їх від множити точок .

Враховуючи, що введення до розгляду матричного рядка- функції  дозволило побудувати загальний розв’язок задачі обернення співвідношень (9.1) з неперервними матричними функціями, поширимо формули Гревіля (8.2) спочатку на матричний рядок-функцію дискретного аргументу .

Розширюючи кожен з L-вимірних стовпців-функфій   елементом  застосуємо формули Гревіля (8.2) до матричного рядка

                     (9.5)

Залежність від  не вказується для спрощення записів та викладок, а буде вказана при побудові розрахункових формул для задач оптимізації вибору точок .

Виходячи із структури формули Гревіля (8.2) позначимо через

         (9.6)

де

Після чого, виходячи з (8.2), маємо:

Звідки, позначивши через

для елементів   отримуємо:

де ,

а інші позначення відповідають прийнятим в (9.6).

Для переходу до неперервного випадку будемо виходити із співвідношень (9.8), розглядаючи їх при .

Враховуючи, що по аналогії з (9.4)

з (9.8) отримаємо:

де тепер

 

 

 

Зауважимо, що область інтегрування тут визначається постановою задачі моделювання. В даній лекції область ця співпадає з областю інтегрування у співвідноешннях (9.1).

9.3. До реалізації алгоритмів оптимізації розміщення спостерігачів у задачі моделювання початково-крайових умов. Для реалізації описаної в п.7.5 градієнтної процедури оптимізації розміщення спостерігачів, координати яких визначаються значеннями будемо виходити з того, що координати ці впливають на розв’язок задачі через вектор-стовпець , що і відобразимо перепозначивши далі на . Врахуємо також, що залежність цієй вектор-функції від координати  визначається її k-им елементом , де  - матрична функція Гріна розглядуваної задачі. Проблему диференціювання  по  розв’яжемо, якщо буде явна залежність вектор-стовпця від .

Для розв’язання поставленої проблеми застосуємо узагальнену формулу Гревіля (9.9) до матричної функції

,

де  – матричний стовпець-функція  без k-го елемента,  – цей елемент, а, як і вище,

При цьому

   (9.10)

де

      (9.11)

       (9.12)

  

Позначивши через   елементи матричного рядка  з врахуванням того, що

з (9.10) – (9.12) знаходимо:

           

при

 

при

при       (9.13)

при

 ,

де  – -елемент матричного рядка

А це значить, що побудовані аналітичні формули диференціювання матричного рядка-функції  по координатах   спостерігачів. Останнє відкриває шлях для реалізації градієнтних процедур оптимізації розміщення спостерігачів розглядуваних систем згідно критерію (7.8), (7.14), (7.15), а саме:

де  – множина псевдорозв'язків відповідної задачі моделювання.

73

Курс лекцій по моделюванню динаміки систем з розподіленими параметрами


 

А также другие работы, которые могут Вас заинтересовать

59956. Поняття про якість води і гранично допустиму концентрацію речовин. Визначення якості води методами хімічного аналізу. Біологічні функції води 113.5 KB
  Мета: поглибити знання про будову води вміст води в організмах біологічні функції води; дати поняття про якість води і гранично допустиму концентрацію речовин; навчитися визначати якість води методами хімічного аналізу І.
59957. Різноманітність водоростей. Значення в природі та житті людини 173 KB
  Мета: ознайомити учнів з будовою та особливостями процесів життєдіяльності відділів Бурі Червоні Діатомові водорості; розглянути особливості пристосування до різних умов життя; зясувати значення водоростей у природі та житті людини.
59958. Значення водоростей в природі та житті людини 51 KB
  Основні поняття та терміни: екологія фармацевт технолог харчової промисловості мікробіологія агар йод осадові породи добрива самоочищення водойм планктон Обладнання: таблиці Водорості Роль водоростей у природі та народному господарстві...
59959. Водойми України. Розкриття значення води для життя людини у творах В. Сухомлинського. Інтегрований урок з природознавства та позакласного читання 159.5 KB
  Мета. Сформувати поняття про водойми: джерело озеро, болото, море; розвивати спостережливість і увагу; виховувати любов до природи, бережне ставлення до її багатств.
59960. Водиця – усьому цариця 32 KB
  Ми проведемо урок у формі гри етапами якої будуть різні конкурси. ІІ Проведення гри 1 конкурс РОЗМИНКА Командам пропонується написати географічний диктант. Кожна правильна відповідь...
59961. Военные походы фараонов 73.5 KB
  Цели урока: Образовательная расширить знания учащихся об основных понятиях урока подвести учащихся к пониманию причин последствий и характера военных походов фараонов Древнего Египта Развивающая создать условия для развития коммуникационных умений и навыков умения обобщать изученный материал делать выводы.
59962. Вогники наших сердець 51.5 KB
  Ведучий: Усі діти люблять свою маму і для кожного вона єдина і найкраща. Я дуже люблю свою маму Ведучий: В дарунок усім мамам танок Полькатрійка Розповідь віршів з показами фото слайдів під музичний супровід Учениця 1. Ведучий.
59963. НЕХАЙ ВОГОНЬ В СЕРЦЯХ ПАЛАЄ, А ПОЖЕЖ ХАЙ НЕ БУВАЄ 542 KB
  МЕТА: продовжувати ознайомлювати учнів із поняттям вогонь; формувати уявлення про причини виникнення пожежі в побуті та її наслідки; вчити учнів правильно діяти у випадку виявлення пожежі вдома чи інших обєктах; розвивати навички самозахисту в умовах задимленого помешкання...