23080

Вимірювання оптичних сталих металів та напівпровідників фотоелектричним методом Бітті

Лабораторная работа

Физика

Якщо поляризатор утворює з площиною падіння кут β а аналізатор кут α то електричний вектор після проходження світлом поляризатора відбиття від зразка та проходження через аналізатор складатиметься з двох проекцій р та s компонент зсунутих по фазі одна відносно іншої. Проекції р та s компонент на площину аналізатора визначають з формул де α кут між площиною коливань в аналізаторі і р площиною А0 амплітуда коливань пропущених поляризатором; rp rs амплітудні коефіцієнти відбиття для р та...

Украинкский

2013-08-04

933.5 KB

1 чел.

Робота 2.

Вимірювання оптичних сталих металів та напівпровідників фотоелектричним методом Бітті

Прилади; джерело світла, монохроматор, поляризаційний гоніометр, досліджуваний зразок у вигляді плоского дзеркала, фотоелектрична приставка, яка складається з фотоелемента або фотопомножувача, підсилювача постійного струму, блока живлення І реєструючого приладу (гальванометра, мікроамперметра або електронного потенціометра)

Теоретичні відомості

Методи вимірювання оптичних сталих металів та напівпровідників на відміну від фотографічних та візуальних забезпечують більшу точність вимірювань, а також дозволяють працювати в широкому оптичному діапазоні і автоматизувати процес вимірювань. Одним з поширених фотоелектричних методів є метод Бітті, який дає досить точні результати.

Як і у візуальних методах, оптичні сталі - показник заломлення n і показник поглинання κ визначають за формулами

(3)

де φ - кут падіння світлових променів на дзеркальний зразок;

Δ — зсув фаз між p - та s - компонентами електричного вектора у відбитій хвилі; ψ - азимут відновленої лінійної поляризації.

Для визначення Δ і ψ треба виміряти два відношення інтенсивностей. Якщо поляризатор утворює з площиною падіння кут β, а аналізатор - кут α, то електричний вектор після проходження світлом поляризатора, відбиття від зразка та проходження через аналізатор складатиметься з двох проекцій р - та s—компонент, зсунутих по фазі одна відносно іншої.

Проекції р - та s - компонент на площину аналізатора визначають з формул

                                 ,

де α – кут між площиною коливань в аналізаторі і р- площиною, А0 - амплітуда коливань, пропущених поляризатором; rp, rs - амплітудні коефіцієнти відбиття для р - та s - компонент; δp, δs - зсув фаз компонент при відбитті.

Інтенсивність світла після аналізатора описується як:

(5)

де β – кут між площиною коливань в поляризаторі і р- площиною, Δ=δps – різниця фаз між p- та s- компонентами; η=tgψ=rp/rs – відношення амплітудних коефіцієнтів відбиття.

У вираз (5) входять кути α і β, один з них можна зафіксувати, а другому надавати кілька значень і вимірювати інтенсивність. Наприклад, нехай β=45, тоді

Вимірюючи інтенсивність J(α) для трьох кутів 0, 45 і 90: J(0)=Jp, J(45)=J45, J(90)=Js визначають ψ і Δ:

  (6)

Для лінійної фотоелектричної системи відповідні відношення інтенсивностей можна замінити відношенням підсилених фотострумів.

Експериментальна частина

Схема установки

Схема установки наведена на рис.2. Промені від вихідної щілини монохроматора Sp проходять крізь лінзу Л1, яка проектує зображення вихідної щілини на вхідну щілину коліматора S. Після коліматора О1 паралельні пучки світла проходять крізь поляризатор Р, відбиваються від зразка М, проходять крізь аналізатор А і лінзою О2 збираються на фотоприймач Ф. Фотоелектрична приставка складається з фотоприймача Ф, підсилювача, блока живлення і реєструю чого приладу

Для вимірювання кута падіння φ в установку замість фотоприймача вставляють окуляр з перехрестям ниток, який разом з об’єктивом О2 утворює зорову трубу. Слід враховувати, що монохроматор вносить значну поляризацію, тому виникають додаткові похибки. В схемі на рис.2 монохроматор стоїть на вході, тому для усунення похибок, пов’язаних з поляризацією світла, треба залишати нерухомим поляризатор Р, а інтенсивність вимірювати, повертаючи аналізатор разом з фотоприймачем Ф. Якщо оптична схема зібрана так, що монохроматор стоїть на виході, нерухомим залишають аналізатор. В цьому випадку треба переконатися, що джерело дає неполяризоване світло.

Виконання роботи

  1.  Вимірювання кута падіння φ у вихідну трубу замість фотоприймача вставляють окуляр, зразок, встановлюють на столик гоніометра і обертанням його та вихідної зорової труби добиваються збігу зображення вхідної щілини коліматора з перехрестям . ниток окуляра. Вхідний коліматор і зорову трубу спочатку слід настроїти на нескінченність. Кут падіння дорівнює половині кута між вхідною і вихідною трубами, який відлічується на гоніометрі. Для підвищення точності кут падіння має наближатись до головного кута падіння,, який у видимій та ультрафіолетовій, ділянках спектра лежить в межах 65-75°.
  2.  Орієнтація поляризатора і аналізатора відносно p- та s- напрямів. Для орієнтації поляризатора і аналізатора окуляр замінюють фотоприймачем Ф. Обертаючи поляризатор і аналізатор, досягають повного гашення, тобто відсутності сигналу. Для цього треба, щоб площини коливань електричного вектора в поляризаторі і аналізаторі збігалася з p- та s- напрямами. Ці положення позначають на лімбах поляризатора та аналізатора. Поляризатор повертають на 45°, аналізатор на 90 і порівнюють сигнали до і після повертання аналізатора на 90. Більший сигнал відповідає випадку, коли площина коливань аналізатора збігається з s- площиною, а менший – з р- площиною.

3. Вимірювання відношення інтенсивностей і обчислення оптичних сталих. Для кожної довжини хвилі повертають аналізатор так, щоб його площина пропускання збігалась з р - площиною, була орієнтована під кутом.45 до р- площини, збігалась з s- площиною. Орієнтація під кутом 45 відповідає тому випадку, коли поляризатор і аналізатор відхиляються від положення повного гашення на 45, але в протилежних напрямах.

При трьох положеннях аналізатора реєструючий прилад, видає три сигнали Js, Jp, J45. Підставляючи їх у формули (6) дістають значення зсуву фаз Δ та азимута відновленої поляризації ψ для даної довжини хвилі. За формулами (3) обчислюють оптичні сталі n і κ.


 

А также другие работы, которые могут Вас заинтересовать

19274. Методология ARIS. Диаграммы переходов состояний (State Transition Diagram, STD). Структурные карты Константайна 196.42 KB
  Лекция 6. Методология ARIS. Диаграммы переходов состояний State Transition Diagram STD. Структурные карты Константайна. Структурные карты Джексона. Метод EricssonPenker. Метод моделирования используемый в технологии Rational Unified Process 6.1. Методология ARIS Методология ARIS реализует принцип...
19275. История UML Описание UML. Сущности UML. Отношения UML. Диаграммы UML. Расширения языка UML. Диаграммы классов 290.15 KB
  Лекция 7. История UML Описание UML. Сущности UML. Отношения UML. Диаграммы UML. Расширения языка UML. Диаграммы классов. Диаграммы использования usecase диаграммы прецедентов. Диаграмма последовательности. Диаграмма кооперации. Диаграмма состояний. Диаграмма деятельности. ...
19276. Назначение CASE-средств. Архитектура CASE-средств. Классификация CASE-средств. Обзор CASE-средств. Системы автоматизированного проектирования 378.84 KB
  Лекция 8. Назначение CASEсредств. Архитектура CASEсредств. Классификация CASEсредств. Обзор CASEсредств. Системы автоматизированного проектирования. Обзор САПР. Компанииразработчики САПР. 8.1. Назначение CASEсредств Термин CASE расшифровывается как ComputerAssisted Software Engineerin...
19277. Проектирование фактографических ИС и хранилищ данных. Подходы к проектированию БД 298.35 KB
  Лекция 9. Проектирование фактографических ИС и хранилищ данных. Подходы к проектированию БД. Этапы нисходящего подхода к проектированию баз данных. Проектирование хранилищ данных. 9.1. Подходы к проектированию баз данных Можно выделить два основных подхода к про
19278. Назначение документальных ИС. Особенности представления и использо-вания документальной информации 244.3 KB
  Лекция 10. Назначение документальных ИС. Особенности представления и использования документальной информации. Типология документальных БД. Типология поисковых задач и режимы обслуживания. Основные процессы обработки и хранения документальной информации. 10.1. Наз...
19279. Лингвистическое обеспечение ИС. Состав лингвистического обеспечения ИС. Знаковые системы. Частотные словари, словари предметной области 267.3 KB
  Лекция 11. Лингвистическое обеспечение ИС. Состав лингвистического обеспечения ИС. Знаковые системы. Частотные словари словари предметной области. Кодификаторы классификаторы тезаурусы онтологии. Информационнопоисковые языки. 11.1. Лингвистическое обеспечен
19280. Структура информации и структура данных. Организация данных в документальных АИПС STAIRS и IRBIS 350.33 KB
  Лекция 12. Структура информации и структура данных. Организация данных в документальных АИПС STAIRS и IRBIS. Документоориентированная база данных Domino/Notes. Технологии поиска и обработки документальной информации. Уровневая модель представления информации в полнотекстовы...
19281. Использование коммуникативных форматов и протоколов. Объектная модель до-кумента (DOM). XML, RDF, OWL 287.37 KB
  Лекция 13. Использование коммуникативных форматов и протоколов. Объектная модель документа DOM. XML RDF OWL. Многоуровневые и многокомпонентные информационные ресурсы. Типология и структура распределенных ИР. Проектирование распределенных документальных информационных...
19282. Проектирование пользовательского интерфейса. Основные принципы и этапы проектирования пользовательского интерфейса 329.19 KB
  Лекция 14. Проектирование пользовательского интерфейса. Основные принципы и этапы проектирования пользовательского интерфейса: выбор структуры диалога разработка сценария диалога определение и размещение визуальных компонентов. Гибкие интерфейсы. Средства поддержк...