23091

ЕЛЕКТРОМЕТР

Лабораторная работа

Физика

Електрометричний вимірювач струму. Опис спектрофотометра СФ5 Ця лабораторна робота знайомить із принципами вимірювання і будовою електрометричних вимірювачів струму їхньою конструкцією і способами визначення основних характеристик що дозволяють використовувати такі прилади разом з фотоелектронними помножувачами ФЕП і фотодіодами ФД для реєстрації слабких потоків випромінювання. За допомогою електрометричних вимірювачів реалізується метод виміру постійного струму застосовуваний для таких приймачів випромінювання що мають малий рівень...

Украинкский

2013-08-04

319.5 KB

9 чел.

6

ЕЛЕКТРОМЕТР

КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ІМЕНІ ТАРАСА ШЕВЧЕНКА

ФІЗИЧНИЙ ФАКУЛЬТЕТ

КАФЕДРА ОПТИКИ

ПРАКТИКУМ “ОПТИКО-ЕЛЕКТРОННІ ПРИЛАДИ І СИСТЕМИ”

4

Електрометричний вимірювач струму

КИЇВ 2001


Список лабораторних робіт та додаткових матеріалів практикуму

“Оптико-електронні прилади і системи”

--------------------------------------------------------------------------------------------

  1.  Дослідження характеристик фотоелектронного помножувача.
  2.  Дослідження характеристик фоторезистора.
  3.  Дослідження характеристик фотодіода.
  4.  Електрометричний вимірювач струму.
  5.  Синхронний детектор.
  6.  Метод лічби одноелектронних імпульсів.
  7.  Вимірювання форми імпульсу випромінювання.
  8.  Реєстрація спектрів пропускання.
  9.  Реєстрація спектрів випромінювання.
  10.  Вимірювання спектральної чутливості фотоприймачів.
  11.  Вимірювання абсолютної та порогової чутливості фотоприймача.
  12.  Методи модуляційної спектроскопії.
  13.  Мікрофотометри.

  1.  Терміни та визначення
  2.  Спектр випромінювання абсолютно чорного тіла. Функція Планка.
  3.  Опис спектрофотометра СФ-5


Ця лабораторна робота знайомить із принципами вимірювання і будовою електрометричних вимірювачів струму, їхньою конструкцією і способами визначення основних характеристик, що дозволяють використовувати такі прилади разом з фотоелектронними помножувачами (ФЕП) і фотодіодами (ФД) для реєстрації слабких потоків випромінювання.

Теоретична частина.

За допомогою електрометричних вимірювачів реалізується метод виміру постійного струму, застосовуваний для таких приймачів випромінювання, що мають малий рівень власних шумів на низьких частотах. Здебільшого це - ФЕП і фотодіоди. Їхній вихідний опір достатнє великий. Тому як підсилювачі сигналів таких фотоприймачів використовують електрометричні вимірювачі струму.

При вимірі малого постійного струму його необхідно перетворити в напругу. Відомі два види перетворювачів малих струмів у напругу: резистор з великим опором R і конденсатор ємністю C з малими утоками. У першому випадку Ur = IxR, у другому - dUc = Ixdt/C, де dt - час заряду, Ix - вимірюваний струм. Оскільки абсолютні значення струмів перерахованих приймачів випромінювання при вимірі граничних потоків рідко бувають нижче, ніж  10-10...10-11A, то для фотометричних цілей практично не має сенсу застосовувати конденсаторний метод.

У сучасних електрометричних вимірниках струму з високоомним резистором на вході напруга на резисторі виміряється із застосуванням підсилювачів з негативним зворотним зв'язком (НЗЗ). При цьому можливі дві схеми: з послідовним і паралельним НЗЗ по напрузі.

Мал.1. Перетворювачі струм-напруга: а) з послідовним і б) паралельним НЗЗ по напрузі.

У першому випадку (мал.1,а) вимірюваний струм Ix , проходячи через резистор R0, створює на ньому падіння напруги  Ux = IxR0. Ця напруга підсилюється, і на виході маємо:

Uout = UxK/(1+K),   (1)

де K - коефіцієнт передачі підсилювача без НЗЗ (для операційних  підсилювачів K>105), = R2 / (R1+R2) - коефіцієнт передачі ланки НЗЗ.

Формула (1) справедлива лише у випадку, якщо вхідний опір підсилювача багато більший за R0. У свою чергу вхідний опір підсилювача з послідовним НЗЗ по напрузі описується рівнянням;

Rin = (1 + Κ)R*,   (2)

де R* - вхідний опір підсилювача без ланки НЗЗ. Таким чином, вхідний опір такого  підсилювача тим більший чим більше , тобто, чим менше коефіцієнт підсилення підсилювача за напругою. З цього погляду найкращим є режим повторювача напруги:

= 1; Rin = KR*; Uout = Ux = IxR0 .   (3)

В другому випадку (мал.1,б) перетворювач (резистор R0) включений у ланку паралельного НЗЗ підсилювача, і вихідна напруга (за умови R0  Rin) має вид:

Uout = KIxR0/(1 + K) .   (4)

Тому що   = 1, а K » 1, то

Uout = IxR0 .   (5)

Вхідний опір підсилювача з паралельним НЗЗ по напрузі:

Rin = R0/(1 + K)  R0/K,   (6)

тобто в K разів менше ніж у підсилювача без НЗЗ. Тому що напруга на вході вимірювача близька до нуля, то зменшується вплив вхідного імпедансу підсилювача на правильність вимірів.

Нижня межа виміру струму обмежена шумами застосовуваного приймача випромінювання. Для ФЕП, наприклад, поріг чутливості визначається величинами порядку 10-11...10-13 лм/Гц1/2, а інтегральна чутливість - 10...103  А/лм. Якщо прийняти величину типової інерційності реєстратора = 1 с (тобто df = 0,25 Гц), то одержимо середньоквадратичне значення шумового струму на виході ФЕП порядку (15)10-11А.

Таким чином, найбільш чутлива шкала електрометричного вимірювача повинна  відповідати струму повного відхилення -10-10 А. При найбільш зручній для реєстрації вихідній напрузі Uout = 1 В можна визначити значення R0 для реєстрації таких струмів. З (5):

R0 = 1/10-10 = 1010 Ом = 10 ГОм.   (7)

Звідси ясно, що вхідні ланцюги підсилювача, застосовуваного для електрометричного вимірювача, повинні бути досить високоомними. В даний час у вхідних ланках використовують польові транзистори. Виготовлення електрометрів на базі прецизійних інтегральних операційних підсилювачів (ОП) виводить з розгляду питання про шуми і дрейфи електрометра, тому що ними завжди можна зневажити в порівнянні із шумами приймачів випромінювання.

З погляду кращого застосування тієї чи іншої з розглянутих схем обговоримо питання про інерційність електрометричного перетворювача струму. Інерційні властивості підсилювача визначаються його вхідним імпедансом Z. У випадку послідовного НЗЗ його величину визначають як вхідна ємність самого підсилювача, так і ємність з'єднуючого приймач випромінювання з електрометром кабелю, а також паразитна ємність перетворювача C0. У найкращих умовах (ліквідація кабелю, розташування електрометра в безпосередній близькості від приймача випромінювання) вдається одержати = 10-11Ф10100м = 0,1 с.

Суттєво кращу швидкодію можна отримати застосовуючи  підсилювач з паралельним НЗЗ. Розглядаючи коефіцієнт перетворення такого перетворювача як S = Uout/Ix з урахуванням вхідного імпедансу операційного підсилювача, одержимо:

S = Z0KZin/(Z0 +KZin ) , (8)

де  Z0 = R0/(1 + j R0C0); Zin = Rin/(1 + j RinCin); C0 - паразитна ємність ланки НЗЗ, Cin - вхідна ємність ОП і сполучного  кабелю. Таким чином, вихідна напруга так залежить від вхідного струму, начебто ланка перетворювача складається з паралельно з'єднаних Z0 і KZin. На підставі (8) можна скласти еквівалентну схему, зображену на мал.2.

Мал.2. Еквівалентна схема електрометра з паралельним НЗЗ.

Оскільки K > 105, то інерційні властивості такого електрометра визначаються винятково власною постійною часу ланки зворотного зв'язку = R0C0. Ємність високоомних резисторів C0  10-13 Ф, і при R0 = 1010 Ом :

C0R0 = 10-13 Ф1010 Ом = 10-3 с.

Для зменшення постійної часу знижують ємність C0 установкою спеціальних екранів (мал.3), за допомогою яких вдається знизити значення C0 до (1...1,5)10-14 Ф і, відповідно, ще в 10 разів зменшити .

Мал.3. Способи зменшення ємності резистора зворотного зв'язку.

З усього вищевикладеного випливає, що електрометричний вимірювач струму з паралельним НЗЗ по напрузі кращий для використання з струмовими джерелами сигналу, якими є такі приймачі випромінювання як фотоелектронні помножувачі і фотодіоди (у фотодіодному і фотогальванічному режимі короткого замикання).

Експериментальна установка

Мал.4. Електрометричний вимірювач струму.

Призначена для виміру характеристик електрометричного вимірювача струму, принципова схема якого представлена на мал.4. Установка містить регульоване джерело напруги з набором резисторів, які імітують джерело струмового сигналу (вихідна напруга джерела виміряється цифровим вольтметром), а також графобудівник типу Н-306, підключений до виходу електрометра.

Завдання

Перед початком роботи уважно ознайомтеся з усіма матеріалами і літературою, пропонованими до даної лабораторної роботи. Перед початком вимірів спробуйте спрогнозувати свої дії. При необхідності, частіше радьтеся з викладачем чи лаборантом.

1. Вимірити залежність показань електрометра від величини вхідного струму. По побудованій характеристиці визначити відхилення від лінійності, а також точність калібрування випробуваного приладу. Оцінити похибку проведених вимірів.

Корисні поради:

* виміри рекомендується проводити при чутливості 10-9 А;

* графік повинний містити не менш 15-20 точок.

2. Вимірити дрейф нульового відліку електрометра. Оцінити поріг чутливості електрометра. Корисні поради:

* від’єднайте вхід електрометра від джерела вхідного сигналу і встановіть заглушку;

* вихід електрометра "1" приєднайте до входу каналу Y графобудівника Н-306. Чутливість каналу, що рекомендується, Y - 0,5 мв/поділку, швидкість розгортки (канал X) - 50 с/см;

зробіть запис власного шуму електрометра при чутливості 10, 1і 0,1 на при постійних часу 0,1 і 1 с.

УВАГА ! При переключенні меж виміру електрометра, зсуві нуля, установці постійної часу, чи включенні/вимиканні електрометра, а також інших маніпуляціях з ним канал Y графобудівника повинний бути ВІДКЛЮЧЕНИМ ! Включення каналу Y можна проводити, установивши вихідний сигнал електрометра близьким до нуля.

3. Визначити динамічний діапазон електрометричного вимірювача струму для одного з меж виміру. На підставі проведених експериментів оцінити, який з каскадів електрометра дає основний внесок у шумовий сигнал.

Література

1. Илюкович A.M. Техника электрометрии. М.: Энергия.-1976.

2. Ансо М.Х., Роос М.Э., Сакс О.В. и др. Электрометрические измерители тока. Приборы и техника эксперимента.-1989, N6, с.25-38.

7

ЕЛЕКТРОМЕТР


 

А также другие работы, которые могут Вас заинтересовать

50025. Измерение сопротивления мостом постоянного тока 39 KB
  Измерение сопротивления мостом постоянного тока Цель работы: ознакомиться с методом измерения сопротивления с помощью моста постоянного тока. Краткие теоретические сведения Одним из распространенных методов определения сопротивления является метод моста постоянного тока. В другие плечи включаются два резистора с известными сопротивлениями R1 и R2 и магазин сопротивлений RМ. Подключить последовательно сопротивления Rx1 и Rx2.
50026. Исследование процессов заряда и разрядки конденсатора и определение емкости конденсатора 255.5 KB
  Исследование процессов заряда и разрядки конденсатора и определение емкости конденсатора Цель работы: изучить временную зависимости напряжения на конденсаторе при подключении или отключении источника постоянной ЭДС и определить емкость конденсатора. Краткие теоретические сведения Рассмотрим процессы заряда и разрядки конденсатора при подключении или отключении источника постоянной ЭДС e0 в схеме представленной на рис. При включении ЭДС появлении импульса ток при заряде конденсатора протекает по внутреннему сопротивлению источника r и...
50027. Темперамента у подростков 235 KB
  Период отрочества характеризуется динамичными изменениями всех физиологических систем и психических функций. Одновременно с этим, подростку приходится осваивать новые социальные роли и функции, перестраивать отношения с окружающим миром, изменять представления о себе как о личности.
50028. Наближене обчислення визначених інтегралів. Методичні вказівки 192 KB
  Загальна квадратурна формула має вигляд: 1. Формула прямокутників Якщо в формулі НьютонаКортеса взяти n=0 то одержимо квадратну формулу методу прямокутників.Кожна з цих сум є інтегральною сумою для на відрізку і тому наближено виражають визначений інтеграл: 1 2 Ці формули називаються формулами прямокутників.1 видно що якщо додатна і зростаюча функція то формула 1 виражає площу ступінчатої фігури що складена із “ внутрішніх†прямокутників а формула 2...
50029. ЧИСЕЛЬНІ МЕТОДИ В ІНФОРМАТИЦІ. МЕТОДИЧНІ ВКАЗІВКИ 74.5 KB
  Розв’язування системи лінійних алгебраїчних рівнянь методом Гауса. Мета роботи: вивчити і засвоїти Методи Гауса і Жордана – Гауса розв’язування СЛАР. Метод Гауса полягає в зведенні квадратної системи 1 до трикутного вигляду з використанням алгоритму послідовного виключення невідомих. Алгоритм методу Гауса складається з двох етапів: Триангуляція матриці 2 Обчислення розв’язку системи рівнянь...
50030. Екологічне право 1.16 MB
  Можливе існування різних видів власності на природні ресурси та користування ними, але безумовно визначення організаційно-правових форм приналежності природних обєктів конкретним соціальним субєктам є своєрідною формою взаємодії суспільства і природи.
50031. Инструментальные возможности программы Corel Draw 167 KB
  Это также наиболее известный из графических программных продуктов корпорации Corel которая наряду с dobe Corportion является ведущим производителем программных продуктов для компьютерной графики. Достоинствам продуктов Corel Corportion является разработка нескольких миллионов готовых изображений причем каждая линия в них поддается редактированию. В Corel Drw существуют не только мощные средства векторного редактирования но и средства верстки многостраничных документов а также подготовки их как в печатном так и в электронном виде.
50032. Измерение параметров индуктивности в цепи переменного тока 255 KB
  Цель работы: Определение импеданса сдвига фаз и измерение индуктивности на разных частотах в резистивно-индуктивной цепи. При работе на переменном токе с реактивными элементами в цепи индуктивность емкость следует обязательно учитывать их реактивный характер проводимости. Кроме того реактивные...
50033. Перевірка правил Кірхгофа 133.5 KB
  Мета роботи: перевірити правила Кірхгофа для кола постійного струму. Теоретичні пояснення правил Кірхгофа а також їх практичне використання для розрахунку розгалужених електричних кіл показані в розділі 3. Застосуємо перше правило Кірхгофа до вузла В...