23322

Защита от быстрых нейтронов

Лабораторная работа

Физика

ЦЕЛЬЮ НАСТОЯЩЕЙ РАБОТЫ является исследование железоводной защиты от быстрых нейтронов и измерение величины сечения выведения для железного поглотителя. ОСНОВНЫЕ ТОРЕТИЧЕСКИЕ СВЕДЕНИЯ При проектировании защиты от нейтронного излучения необходимо что процесс захвата и поглощения эффективен для тепловых медленных и резонансных нейтронов благодаря большому десятки сотни барн сечению их взаимодействия с веществом см. Энергетический спектр нейтронов деления ядра тепловыми нейтронами.

Русский

2013-08-04

209 KB

12 чел.

Лабораторная работа

Защита от быстрых нейтронов.

ЦЕЛЬЮ НАСТОЯЩЕЙ РАБОТЫ является исследование железо-водной защиты от быстрых нейтронов и измерение величины сечения выведения для железного поглотителя.

ОСНОВНЫЕ ТОРЕТИЧЕСКИЕ СВЕДЕНИЯ

При проектировании защиты от нейтронного излучения необходимо, что процесс захвата и поглощения эффективен для тепловых, медленных и резонансных нейтронов благодаря большому (десятки, сотни барн) сечению их взаимодействия с веществом (см. рис. 1). В связи с этим быстрые нейтроны деления должны быть предварительно замедлены.

Рис.  Энергетический спектр нейтронов деления ядра

тепловыми нейтронами. Линия - спектр Уатта.

Рассмотрение кинематики упругого столкновения нейтрона с атомным ядром, находящимся первоначально в состоянии покоя, показывает, что относительная потеря энергии при таком взаимодействии равна:

где  - начальная энергия нейтрона;

  - величина потерянной энергии в результате столкновения;

  - угол рассеяния;

  - параметр (- массовое число ядра замедлителя).

Видно, что потери энергии будут максимальными при обратном рассеянии () и при :

т.е. при рассеянии на водороде нейтрон может потерять всю энергию уже в одном столкновении. Для тяжелых ядер:

и потери энергии уменьшаются с ростом

Вероятность потери энергии при неупругом рассеянии возрастает на тяжелых ядрах и с увеличением энергии нейтрона. Таким образом, защита должна иметь в своем составе водород или другое легкое вещество для замедления (выведения из группы быстрых и промежуточных) нейтронов и тяжелые элементы для замедления быстрых нейтронов через неупругое рассеяние и ослабление захватного гамма – излучения.

Точный расчет прохождения нейтронов через многокомпонентную защиту сложен, т.к. они могут захватиться или рассеяться; рассеяние может быть упругим и неупругим, изотропным и неизотропным (анизотропным), сечение зависит от энергии и материала среды и т.д. В связи с этим, для упрощения рассмотрения пользуются различными приближенными подходами, одним из которых является теория выведения быстрых нейтронов. Эта теория позволяет производить расчет сложной (например, двухслойной) защиты, основываясь на экспериментальных данных, полученных для одного материала.

В нашем случае методика сечения выведения основана на том, что в большинстве водород содержащих сред при выполнении некоторых условий влияния других вводимых в защиту материалов, ослабляющих быстрые нейтроны, например, железо, можно учесть простым экспоненциальным множителем и доза нейтронного излучения на расстоянии () от источника может быть определена из формулы:

    (1)

 где  - доза в точке А (рис. 2) при наличии пластины из тяжелого материала толщиной ;

  - доза в точке А на расстоянии  от источника в легком материале при отсутствии пластины тяжело материала;

  - сечение выведения;

Рис. 2  Схема измерения сечения выведения.

Метод сечения выведения предложен Р. Альбертом и Дж. Велтоном в 1950 г.

ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ

Экспериментальная установка, которая реализует схему изображенную на рис. 2, состоит из бака с водой, набора стальных поглотителей и регистрирующего прибора типа СПУ-1 с детектором, позволяющим производить измерения в условиях полного погружения в воду. Плутоний – бериллиевый источник нейтронов типа ИБН с активностью  может размещаться как в воде, так и в полиэтиленовом ограждении. Следует обратить внимание на принципиальное отличие углового распределения в схеме измерения сечения выведения (рис. 2) и в лабораторной установке. В первом случае используется мононаправленный пучок нейтронов, в нашем – изотропный. Это приводит к тому, что при изменении толщины тяжелого поглотителя будет меняться и величина  пропорционально .

ПОРЯДОК ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ

Изучить инструкции по технике безопасности при работе в лаборатории и, выполняя их требования, приступить к измерениям с разрешения преподавателя.

  1.  Установить внутри полиэтиленовой защиты источник ИБН – 7 на продольной оси слоя воды на необходимом расстоянии от внешней поверхности бака. При измерениях с изотропным источником нейтронов необходимо принять меры либо для фиксации значения , либо для его измерения или вычисления.
  2.  Измерить интенсивность потока быстрых нейтронов на оси водяного поглотителя от  см и до максимально возможного с шагом около 10 см со стальным экраном толщиной 515 см и без него. Результаты измерений заносятся в таблицу.
  3.  Считаем в первом приближении, что доза в данной точке пропорциональна плотности потока быстрых нейтронов. Тогда выражение (1) преобразуется к виду:

     (2)

где  - интенсивность излучения в любых единицах.

ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

  1.  Результаты полученные при измерениях заносятся в таблицу следующего вида:

X

D

Nфона

N

Nист

  1.  Результаты таблицы обрабатываются методом наименьших квадратов.
  2.  Полученные зависимости используются для определения величины сечения выведения из соотношения (2).
  3.  Построить зависимость  от толщины водяного поглотителя.
  4.  Найти минимальную толщину слоя воды, при котором можно пользоваться методом выведения.
  5.  Рассчитать погрешность величины .

Для нахождения коэффициента  воспользуемся методом наименьших квадратов. Нам необходимо получить линейное уравнение вида:

Где коэффициент  будет являться коэффициентом поглощения . Для построения уравнения воспользуемся полученными данными: точка замера (), значение .

Поскольку в нашем уравнении неизвестны два коэффициента (), то для нахождения этих коэффициентов потребуется система уравнений второго порядка следующего вида:

где коэффициенты  находятся по формуле , а правые части  находятся по формуле (здесь соответствует толщине, а  соответствует количеству зарегистрированных частиц на координате  ). Получив численные значения , и подставив их в систему мы найдем неизвестные  нашей системы уравнений.

ЭЛЕМЕНТЫ НАУЧНЫХ ИССЛЕДОВАНИЙ

  1.  Обосновать выбор методики измерений п.1 раздела «порядок выполнения измерений».
  2.  Обосновать или указать область справедливости приближения в п. 3 раздела «порядок выполнения измерений».
  3.  Обосновать методику выполнения.

КОНТРОЛЬНЫЕ ВОПРОСЫ

  1.  В чем заключается физический смысл сечения выведения?
  2.  Объяснить разницу в формировании поля излучения от мононаправленного или изотропного источника излучения.
  3.  Сформулировать и обосновать область применения понятия сечения выведения.
  4.  Какие особенности распространения нейтронов в железно-водной защите позволяет ввести понятие сечения выведения?

ЛИТЕРАТУРА

  1.  Андреев О.В. Активационная радиометрия нейтронных полей. Методическое пособие. – 1988 г.
  2.  Козлов В.Ф. Справочник по радиационной безопасности. – М., ЭАИ, 1987 г.
  3.  Голубев Б.П. Дозиметрия и защита от ионизирующих излучений. – М., ЭАИ, 1986 г.


 

А также другие работы, которые могут Вас заинтересовать

64374. РОЗРОБКА ТЕХНОЛОГІЇ ВЛАШТУВАННЯ БУРОНАБИВНИХ ПАЛЬ З ГІДРОФОБІЗОВАНИМ ПРОШАРКОМ У ПРОСАДОЧНИХ ҐРУНТАХ ІІ ТИПУ 915 KB
  Відомо що при влаштуванні буронабивних паль в просадочних ґрунтах ІІ типу для зниження негативного тертя що діє у просадочному шарі та підвищення несучої здатності рекомендується застосовувати антифрикційні покриття поліетиленові плівки пластик бітумні матеріали.
64375. Сучасні тенденції розвитку професійної технічної освіти у Польщі 158 KB
  Соціально-економічні перетворення, що відбулися в Україні впродовж останнього десятиліття, призвели до суттєвої реструктуризації багатьох галузей, зникнення одних напрямів і виникнення інших.
64376. ПАТОГЕНЕЗ НАБРЯКУ-НАБУХАННЯ ГОЛОВНОГО МОЗКУ ТА ОБҐРУНТУВАННЯ ОПТИМАЛЬНОЇ ФАРМАКОТЕРАПІЇ ПРИ ТЯЖКІЙ ЧЕРЕПНО-МОЗКОВІЙ ТРАВМІ 511.5 KB
  У зазначений термін до патологічного процесу залучаються всі системи життєзабезпечення організму розвивається набрякнабухання мозку вторинне ушкодження центральної нервової системи ЦНС причинами якого є ішемія гіпоксія і токсемія...
64377. СУСПІЛЬНО-ГЕОГРАФІЧНІ ПРОЦЕСИ ЗАСЕЛЕННЯ ПІВНІЧНОЇ БЕССАРАБІЇ 770 KB
  Метою роботи є обгрунтування теоретико-методологічних основ суспільногеографічних на прикладі ретроспективноекістичних досліджень історикогеографічного регіону аналіз утворення поселень і формування поселенської мережі...
64378. СОРБЦІЙНО ЗДАТНІ МЕТАЛОВМІСНІ ГІДРОГЕЛІ НА ОСНОВІ КОПОЛІМЕРІВ ПОЛІВІНІЛПІРОЛІДОНУ 291.5 KB
  Перспективними для використання в згаданих галузях є гідрогельні металонаповнені матеріали на основі кополімерів полівінілпіролідону ПВП з метакрилатами оскільки відзначаються широким спектром фізико-механічних та фізико-хімічних властивостей.
64379. Патогенетичні особливості розвитку імунних, метаболічних та мікроциркуляторних порушень в дітей, хворих на гостру позалікарняну пневмонію 153 KB
  Достатньо частою формою поразки органів дихання у дітей є пневмонії Самсыгина Г. Але згідно до експертної оцінки вважають що захворюваність на гостру пневмонію складає від 4 до 20 випадків на 1000 дітей у віці від 1 місяця до 15 років...
64380. КРИМІНАЛЬНО-ВИКОНАВЧА СИСТЕМА У БОРОТЬБІ З «ВОРОГАМИ НАРОДУ» В ЗАХІДНІЙ УКРАЇНІ 179 KB
  Подруге потребує комплексної реконструкції і сам процес становлення спеціальних репресивних органів у структурі НКВС що займалися виявленням ворогів народу а також типологізація каральновиправних установ в яких вони відбували покарання.
64381. МЕТОД ВІДНОВЛЕННЯ ЕКСПЛУАТАЦІЙНИХ ЯКОСТЕЙ РОБОЧИХ РІДИН ФУНКЦІОНАЛЬНИХ ЕНЕРГЕТИЧНИХ СИСТЕМ АВІАЦІЙНИХ ТРАНСПОРТНИХ КОМПЛЕКСІВ В КВАЗІПОСТІЙНОМУ ЕЛЕКТРИЧНОМУ ПОЛІ 14.51 MB
  На частку рідинних енергетичних систем повітряних суден ПС припадає до 50. Це в першу чергу пов’язано з використанням палив олив і спеціальних рідин які не в повній мірі відповідають вимогам ДСТУ ГОСТ 172162004 який визначає ступінь конструктивної...
64382. ГЕОМЕТРИЧНЕ МОДЕЛЮВАННЯ РОЗПОДІЛУ ВІДБИТОЇ СОНЯЧНОЇ ЕНЕРГІЇ НА ПРИЙМАЧІ 229 KB
  Кількісна оцінка інтенсивності відбитого потоку дозволяє визначати зони розрідження і концентрації енергії. Розробити алгоритм побудови точкового каркаса поверхні розподілу ступеню концентрації відбитої енергії на приймачі з комп'ютерною реалізацією.