23358

СЛОЖЕНИЕ ОДНОНАПРАВЛЕННЫХ И ВЗАИМНОПЕРПЕНДИКУЛЯРНЫХ КОЛЕБАНИЙ

Лабораторная работа

Физика

СЛОЖЕНИЕ ОДНОНАПРАВЛЕННЫХ И ВЗАИМНОПЕРПЕНДИКУЛЯРНЫХ КОЛЕБАНИЙ. Цель работы: изучение эффектов возникающих при сложения однонаправленных и взаимно перпендикулярных гармонических колебаний. Представим каждое из колебаний как проекцию на ось X вектора длиной равной амплитуде вращающегося по часовой стрелке с угловой скоростью  рис. Тогда результат сложения колебаний можно представить как проекцию суммарного вектора .

Русский

2013-08-04

383.5 KB

39 чел.

Лабораторная работа № 2/2.

СЛОЖЕНИЕ ОДНОНАПРАВЛЕННЫХ И

ВЗАИМНОПЕРПЕНДИКУЛЯРНЫХ КОЛЕБАНИЙ.

Цель работы: изучение эффектов, возникающих при сложения однонаправленных и взаимно перпендикулярных гармонических колебаний.

ОСНОВЫ ТЕОРИИ

Идеальные гармонические колебания и сигналы являются, строго говоря, некоторой математической абстракцией. Реальные сигналы, в принципе, не могут быть гармоническими, все они в той или иной мере являются композицией нескольких или большого числа гармонических сигналов. Рассмотрим несколько случаев, возникающих при сложении сигналов.

1. Сложение однонаправленных сигналов.

1.1. Сложение двух гармонических сигналов одинаковой частоты.

Пусть даны два однонаправленных колебания с одинаковой частотой

                  

которые могут различаться амплитудой и начальной фазой. Задачу о результате их сложения удобнее решать в векторной форме.

Представим каждое из колебаний как проекцию на ось X вектора длиной, равной амплитуде, вращающегося по часовой стрелке с угловой скоростью   (рис.1). Угол между вектором и осью X равен начальной фазе.

Тогда результат сложения колебаний можно представить как проекцию суммарного вектора . Найдем амплитуду  A и начальную фазу   результирующего колебания. Из рис. 1 имеем:

           (1)

а из теоремы косинусов:

   ,

где ,

 Рис.1     или                       (2)           

Таким образом, при сложении двух однонаправленных гармонических колебаний с одинаковой частотой  получается гармоническое колебание с той же частотой  и амплитудой и фазой, определяемыми формулами (1) и (2).

В частности, при сложении двух колебаний с одинаковой амплитудой и совпадающих по фазе (или отличающихся на 2), амплитуда результирующего колебания удваивается, а при разности фаз (или кратной нечетному числу ) амплитуда результирующего колебания равна нулю.

1.2. Сложение гармонических колебаний с близкими частотами (биения).

Пусть даны два однонаправленных колебания с незначительно отличающимися частотами:

                                                

где . (Для простоты выкладок нами взяты одинаковые амплитуды и начальные фазы колебаний.) Результат сложения таких колебаний можно представить в следующем виде:  

      (3)

где   Мы использовали при этом формулу преобразования суммы косинусов в произведение.

Из формулы (3) следует, что результирующий процесс можно рассматривать как колебания, происходящие с частотой и амплитудой , медленно меняющейся со временем по закону косинуса:

                                         

На рис.2 приведен пример сложения двух колебаний с близкими частотами.

   

   

                                         Рис.2

Таким образом, при сложении однонаправленных колебаний с близкими частотами получается колебание с амплитудой меняющейся во времени по закону косинуса (биения).

Как следует из (3) период биений (изменения амплитуды) (рис.2) равен: . При этом за один период изменения амплитуды происходит  полных колебаний (за половину периода - в два раза меньше).

Необходимо отметить, что энергия суммарного колебания пропорциональна  и, следовательно, меняется с частотой, вдвое большей, чем амплитуда . Это особенно важно при регистрации биений приборами, большинство которых реагирует не на изменение амплитуды, а на изменение энергии (в частности, вольтметры, амперметры, человеческое ухо и др.).

1.3 Разложение периодических сигналов на гармонические составляющие (Фурье-анализ).

Можно показать, что любой реальный периодический сигнал, вне зависимости от его формы, можно представить как суперпозицию гармонических сигналов с кратными частотами.

Процесс представления сигналов в виде суммы гармонических колебаний называется Фурье-анализом.

Пусть дан некоторый сигнал U(t) длительностью , который можно рассматривать как повторяющийся с периодом  Т > (рис.3).

Тогда функцию U(t) в любой момент времени можно представить в виде:

  (4),

где :

   

Равенство (4) можно также представить в виде:

   (5)

где:    

Таким образом, периодический сигнал был представлен в виде суммы некоторой постоянной составляющей U0 и набора гармонических сигналов с частотами кратными основной частоте . Значения коэффициентов  Un в выражении (5) определяют так называемый спектр сигнала.

 Спектром сигнала называют соотношение амплитуд (или энергий) составляющих его гармоник.

 Найдем спектр сигнала прямоугольной формы, приведенного на рис.4 и имеющего следующие параметры: A = 1В, T = 0,01с,   = 0,005 с.

Основная частота  

 

 Рис. 4

Вычислим коэффициенты спектрального разложения:

                                     

  где n =1, 2, 3, ...

Очевидно, что величина Вn отлична от нуля только при нечетных значениях n.

Окончательно имеем:

 

Таким образом, рассматриваемый сигнал можно представить как сумму синусоид, содержащих только частоты, кратные нечетному числу. На рис.5 приведен частотный спектр исследуемого сигнала, причем в качестве интенсивности соответствующей составляющей (гармоники) взяты квадраты амплитуд. На рис.6 приведены три первые составляющие Фурье-анализа и результат их сложения.

      

           Рис.5

     

  Представление сигналов различной формы в виде суперпозиции гармонических составляющих (нахождение спектра) играет огромную роль в расчете процессов их прохождения через радиотехнические устройства.

2. Сложение взаимно перпендикулярных колебаний.

2.1 Сложение колебаний одинаковой частоты.

При сложении двух взаимно перпендикулярных колебаний одинаковой частоты:

 

результирующий процесс описывается уравнением (вывод см. /1/):

 ,                                                                  (6)

которое в общем случае описывает эллипс. При определенных соотношениях амплитуд и разности фаз эллипс может вырождаться в окружность и прямую.

В частности, при =0 () уравнение (6) принимает вид:

 

и колебания происходят вдоль прямой.

При  и  Ax = Ay = A колебания происходят по окружности

 .

Таким образом, при сложении взаимно перпендикулярных колебаний с одинаковыми частотами получается эллипс, который, при определенном соотношении амплитуд и фаз складываемых колебаний, вырождается в прямую или окружность.

2.2 Сложение колебаний с кратными частотами (фигуры Лиссажу).

Пусть даны два взаимно перпендикулярных колебания с кратными частотами:

 ,

причем частоты относятся как целые числа:

 .

В результате сложения получаются колебания, проходящие вдоль сложных траекторий, называемых фигурами Лиссажу.

В частности, если частоты относятся как 2:1, получаем:

а) при 

 

откуда, используя выражение для косинуса, получаем:

 ,                 (7)

то есть траектория представляет собой часть параболы,

б) при ;

 

На рис.7 а) и б) приведены графики функций, описываемых уравнениями (7) и (8).

 а)        б)

    Рис.7

Общей особенностью фигур Лиссажу является то, что отношение числа пересечений траектории с осями N обратно пропорционально отношению частот колебаний вдоль соответствующих направлений:

 ,                                  (9)

что позволяет определить частоты неизвестных колебаний.

 

Описание экспериментальной установки И МЕТОДА ИЗМЕРЕНИЙ

Установка состоит (рис.8) из осциллографа С1-71 и двух генераторов колебаний Г3-118.

                 

              Рис.8

При сложении однонаправленных колебаний сигналы с обоих генераторов подаются с помощью кабелей через тройник на вход "Y”. При этом тумблер "Запуск" осциллографа устанавливается в положение "Автоматическая", а тумблер "Синхронизация" в положение "Внутренняя".

При сложении взаимно перпендикулярных колебаний сигналы с генераторов подаются на входы "Y" и "X" осциллографа, тумблер "Запуск" устанавливается в положение "X", а  синхронизация в положение "Внешняя 1:1".

При установке частоты сигнала на генераторах следует обратить особое внимание на положение десятичной запятой на числовом табло.

Инструкции по эксплуатации осциллографа и генераторов находятся на рабочих столах.

ПОРЯДОК ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ И ОБРАБОТКА РЕЗУЛЬТАТОВ

Задание 1. Сложение однонаправленных колебаний.

Включить осциллограф и два генератора Г3-118 и дать им прогреться 3-5 минут.

Выходы генераторов с помощью кабелей и тройника подключить к входу "Y" осциллографа.

Установить на одном генераторе частоту , а на другом  и одинаковые выходные напряжения.

Установить ручку "Время/дел." осциллографа в положение 0,2 мс. С помощью ручки "Вольт/дел." добиться, чтобы высота колебаний на экране составляла 4-5 больших клеток.

Ручкой "Уровень синхронизации" осциллографа добиться получения практически устойчивой картины биений. Зарисовать наблюдаемую картину в лабораторный журнал. Подсчитать число полных колебаний за один период изменения амплитуды. Проверить соотношение .

Повторить п.5 для частот    и .

Задание 2. Сложение взаимно перпендикулярных колебаний.

Подключить выход одного генератора к входу "Y", а другого - к входу "X" осциллографа. Установить на генераторах одинаковую частоту .

Ручками "Расстройка" и регулятором выхода одного из генераторов добиться получения на экране осциллографа окружности и прямой. Зарисовать полученные картины в лабораторный журнал.

Получить на экране и зарисовать в лабораторный журнал фигуры Лиссажу для следующих комбинаций частот: а)  и  , б)  и .

Проверить экспериментально справедливость формулы (9).

Провести анализ полученных в работе результатов и сделать выводы, отразив их в заключении по работе. Особо отметить результаты экспериментальной проверки формул.

Контрольные вопросы

Получить формулу для амплитуды при сложении однонаправленных колебаний одинаковой частоты.

При каком соотношении частот складываемых колебаний период изменения амплитуды в 20 раз больше периода колебаний?

Что такое частотный спектр сигнала и как его получить?

При каком условии при сложении взаимно перпендикулярных колебаний получается прямая y=-2x ?

Нарисовать траекторию движения точки при сложении двух взаимно перпендикулярных колебаний  .

Нарисовать спектр сигнала, представленного уравнением:

                                                          Литература

Савельев И.В. Курс общей физики, т.2. Механика, колебания и волны, молекулярная физика. М: Наука, 1970 г.  68 - 72.

Трофимова Т.И. Курс физики: Учеб. пособие для вузов. - 2 изд.- М.:Выс. шк., 1990.  144, 145.

 

  

    


 

А также другие работы, которые могут Вас заинтересовать

79742. Учет нематериальных активов 104.5 KB
  Учет нематериальных активов. Учет нематериальных активов. Поступление нематериальных активов А Приобретение нематериальных активов за плату Б Создание нематериальных активов собственными силами Амортизация нематериальных активов А Амортизируемые нематериальные активы Б Неамортизируемые нематериальные активы В Амортизация деловой репутации организации. Выбытие нематериальных активов 1. Учет нематериальных активов Планом счетов для учета нематериальных активов предусмотрен счет 04 Нематериальные активы а для обобщения информации о...
79743. Бухгалтерский учет скидок в организации оптовой торговли 36.5 KB
  Бухгалтерский учет скидок в организации оптовой торговли Порядок отражения в бухгалтерском учете скидки при приобретении товаров в определенном количестве либо на установленную суммуПорядок отражения в бухгалтерском учете скидки за скорейшую оплату проданных товаров Порядок отражения в бухгалтерском учете скидки при приобретении товаров в определенном количестве либо на установленную сумму Торговая скидка это сумма на которую снижается проданная цена товаров реализуемых покупателю исполнившему условие необходимое для ее получения....
79744. Командировочные расходы: учет и налогообложение 62.5 KB
  Командировочные расходы: учет и налогообложение Состав расходов возмещаемых командировочному лицу Документальное оформление командировочных расходов. Включение командировочных расходов в себестоимость продукции Налоговые отношения возникающие при наличии командировочных расходов...
79745. Операции по оплате труда 98.5 KB
  Все работы на предприятии выполняют члены трудового коллектива, разрешено принимать на работу лиц договором гражданско-правового характера (подряд). На предприятии применяются различные формы оплаты труда: повременная, сдельная, аккордная.
79746. Организация учета производственных запасов 76 KB
  Организация учета производственных запасов Задачи и виды учета производственных запасов Первичные документы по учету материалов Договоры поставки Учет материалов на складе. Предприятие при выборе учетной политики на предстоящий год может предусмотреть один из следующих методов оценки материалов списываемых в производство: по средней себестоимости по учетным ценам с обособленным учетом отклонений от учетной стоимости по себестоимости первых по времени закупок методом ФИФО первая партия на приход первая на расход по...
79747. Учет основных средств 282 KB
  Учет основных средств. Классификация и оценка основных средств ОС. Классификация и оценка основных средств ОС Основные средства это средства труда которые участвуют во многих производственных циклах не меняя своего натурально-вещественного содержания и переносят свою стоимость на готовый продукт частями по мере износа. объект ОС характеризуется следующими качествами: является материальной частью имущества организации; используется в качестве средства труда при производстве продукции выполнении работ и оказании услуг либо для...
79748. Отчетность предприятия 94 KB
  В разделе Капитал и резервы содержаться следующие группы статей: Уставный капитал Добавочный капитал Резервный капитал Нераспределенная прибыль прошлых лет Прибыль отчетного года. Отчет о финансовых результатах Отчет о финансовых результатах характеризует финансовые результаты организации за отчетный период и в развернутом виде показывает: по хозяйственной деятельности: выручку нетто от реализации продукции работ услуг за минусом НДС и акцизов; себестоимость реализации товаров продукции работ услуг; коммерческие...
79749. Поступление товаров на предприятие оптовой торговли 57.5 KB
  Поступление товаров на предприятие оптовой торговли Поступление товаров на склад поставщика Синтетический учет поступления товаров Аналитический учет поступления товаров Учет приобретения товаров у физических лиц Поступление товаров на склад поставщика Приемка товара на склад поставщика железнодорожной станции пристани в аэропорту осуществляется материально-ответственным лицом по доверенности с предъявлением паспорта. Первый и второй остаются у поставщика в бухгалтерии и на складе тритий и четвертый передаются покупателю в...
79750. Принципы организации оптовой торговли 63.5 KB
  Принципы организации оптовой торговли Понятие оптовой торговли Дата оприходования товаров на предприятиях оптовой торговли Формирование покупной цены товара Учет изменения первоначальной стоимости товара Понятие оптовой торговли Гражданское законодательство дает определение договора розничной куплипродажи. Таким образом критериями отнесения торговли к оптовой не является способ оплаты товара и количество приобретенного товара а является вид покупателя и характер использования товара. Кроме того существуют специализированные...