23383

Определение коэффициента динамической вязкости воздуха

Лабораторная работа

Физика

Нехаенко Определение коэффициента динамической вязкости воздуха Методические указания к выполнению лабораторной работы № 15 по курсу механики молекулярной физики и термодинамики. Цель работы заключается в определении коэффициента динамической вязкости воздуха методом истечения воздуха через капилляр. Сила внутреннего трения между двумя слоями газа подчиняется закону Ньютона: 1 где коэффициент динамической вязкости газа...

Русский

2013-08-05

535 KB

63 чел.

PAGE  - 9 -

Московский государственный технический

университет им. Н.Э. Баумана.

Калужский филиал.

Т.С. Китаева, Р.В. Нехаенко

«Определение коэффициента динамической вязкости воздуха»

Методические указания к выполнению лабораторной работы № 15

по курсу механики, молекулярной физики и термодинамики.

Калуга 2007 г.

Цель работы заключается в определении коэффициента динамической вязкости воздуха методом истечения воздуха через капилляр.

1. Теоретическая часть.

Термодинамическая система представляет собой совокупность макроскопических тел. Её состояние задаётся термодинамическими параметрами – параметрами состояния, в качестве которых обычно выбирают температуру, давление и удельный объём.

Термодинамическая система находится в равновесии, если её состояние с течением времени не меняется.

В термодинамических неравновесных системах возникают особые необратимые процессы, называемые явлениями переноса, в результате которых происходит пространственный перенос энергии, массы и импульса.

К явлениям переноса относятся теплопроводность (обусловлена переносом энергии), диффузия (обусловлена переносом массы) и внутреннее трение (обусловлено переносом импульса).

Механизм возникновения внутреннего трения между параллельными слоями газа, движущимися с различными скоростями, заключается в том, что из-за хаотического теплового движения происходит обмен молекулами между слоями. В результате импульс слоя, движущегося быстрее, уменьшается; движущегося медленнее - увеличивается, что приводит к торможению слоя, движущегося быстрее, и ускорению слоя, движущегося медленнее.

Сила внутреннего трения между двумя слоями газа подчиняется закону Ньютона:

,                                                                                                                    (1)

где  - коэффициент динамической вязкости газа (динамическая вязкость), ;

        - модуль градиента скорости; показывает быстроту изменения скорости в направлении оси , перпендикулярном движению слоёв;

        - площадь, на которую действует сила .

Взаимодействие двух слоёв согласно второму закону Ньютона можно рассматривать как процесс, при котором от одного слоя к другому в единицу времени передаётся импульс, по модулю равный действующей силе. Тогда выражение (1) можно переписать в виде:

,                                                                                                                     (2)

где  - плотность потока импульса – величина, определяемая полным импульсом, переносимым в единицу времени через единичную площадку, перпендикулярную оси  в положительном направлении данной оси. Знак «минус» показывает, что импульс переносится в направлении убывания скорости.

Таким образом, динамическая вязкость  численно равна плотности потока импульса при градиенте скорости, равном единице.

Можно показать, что:

,                                                                                                                 (3)

где  - плотность газа;

     - средняя арифметическая скорость теплового движения молекул;

     - средняя длина свободного пробега молекул.

Согласно молекулярно-кинетической теории газов:

,                                                                                                                   (4)

где  - абсолютная температура газа;

      - молярная масса газа;

     - универсальная газовая постоянная.

Откуда следует, что с увеличением температуры увеличивается средняя арифметическая скорость теплового движения молекул, и динамическая вязкость в газах возрастает.

Наряду с коэффициентом динамической вязкости часто используется коэффициент кинематической вязкости :

,                                                                                                                              (5)

где  - плотность газа.

Коэффициент кинематической вязкости в СИ измеряется в метрах квадратных на секунду, .

2. Экспериментальная часть.

Для определения коэффициента динамической вязкости воздуха в данной работе используется метод истечения воздуха через капилляр.

С этой целью рассмотрим метод Пуазейля, который основан на ламинарном течении жидкости в тонком капилляре радиусом  и длиной . В жидкости мысленно выделим цилиндрический слой радиусом  и толщиной  (Рис. 1.).

Рис. 1.

Сила внутреннего трения, действующая на боковую поверхность этого слоя, согласно (1) равна:

,                                                                                             (6)

где  - боковая поверхность цилиндрического слоя.

Знак «минус» означает, что при возрастании радиуса скорость уменьшается.

При установившемся течении жидкости сила внутреннего трения, действующая на боковую поверхность цилиндра, уравновешивается разностью сил давлений, действующих на его основание:

.

Разделяя переменные, получим:

,                                                                                                                (7)

где  - разность давлений в начале и конце капилляра.

После интегрирования, полагая, что у стенок имеет место прилипание жидкости, то есть скорость на расстоянии  от оси равна нулю, получим:

                                                                                                           (8)

Отсюда видно, что скорость частиц жидкости распределяется по параболическому закону, причём вершина параболы лежит на оси «трубы» капилляра.

За время  из капилляра вытечет жидкость, объём которой равен:

.

Откуда коэффициент динамической вязкости равен:

                                                                                                                    (9)

Газы в отличие от жидкостей обладают значительной сжимаемостью. Но при малых разностях давлений и соответственно малых скоростях течения сжимаемостью газов можно пренебречь и применить к ним формулу (9).

Таким образом, зная , ,  и , можно определить вязкость воздуха. На Рис. 2. представлена экспериментальная установка. Один конец капилляра (1), через который протекает воздух, с помощью тройника (2) соединяется с сосудом (3), который закрыт резиновой трубкой с небольшим отверстием, и левым коленом манометра (4). Если при закрытом кране (5) воронки открыть кран (6), то вследствие вытекания воды давление в баллоне (7) будет уменьшаться, и в него будет подсасываться воздух, который пройдёт через капилляр. Скорости движения бесконечно тонких цилиндрических слоёв воздуха, расположенных на различных расстояниях от оси капилляра, будут различны.

Если установившееся течение жидкости является ламинарным, скорости по сечению капилляра распределены по параболическому закону. Если считать, что для слоя, прилегающего к стенкам капилляра, имеет место явление прилипания, то скорость этого слоя равна нулю. Наибольшая скорость будет по осевой линии капилляра. Вследствие различия скоростей слоёв между ними возникнут силы внутреннего трения. При этом силу вязкости, действующую на элементарный цилиндрический объём и приложенную у боковой поверхности цилиндра, уравновешивает разность сил давлений, действующих на основания цилиндра. На концах капилляра при протекании через него воздуха будет существовать разность давлений: , где  и  - давление на входе и выходе капилляра соответственно. Эта разность давлений будет постоянной, так как параметры, характеризующие установившееся течение - скорость, давление в различных точках потока и т.д. - с течением времени не меняются.

Английский учёный О. Рейнольдс установил, что характер течения как жидкостей, так и газов зависит от безразмерной величины, называемой числом Рейнольдса:

,                                                                                                                   (10)

где  - плотность воздуха;

      - средняя по сечению капилляра скорость воздуха;

      - диаметр капилляра.

При малых значениях числа Рейнольдса () наблюдается ламинарное течение. Переход от ламинарного течения к турбулентному происходит в области значений: , а при  (для гладких труб) течение становится турбулентным. Остаётся добавить, что течение называется ламинарным, если вдоль потока каждый выделенный тонкий слой скользит относительно соседних, не перемешиваясь с ними; и турбулентным (вихревым), если вдоль потока происходит интенсивное вихреобразование и перемешивание жидкости или газа.

Рис. 2. Экспериментальная установка для определения коэффициента динамической вязкости воздуха.

3. Выполнение эксперимента.

1. Закрыть кран (6). Наполнить баллон (7) водой на  его объёма, открыв кран (5) воронки, после чего кран (5) закрыть.

2. Открыть кран (6). Регулируя скорость течения воды так, чтобы разность уровней жидкости (воды) в коленах манометра  не превышала .

3. Убедившись в том, что течение воздуха через капилляр установилось (в этом случае  остаётся неизменной), измерить , а также время, за которое из баллона в мензурку вытекает объём воды  (этот объём занимает воздух).

4. Вычислить разность давлений :

,

где  - плотность воды, ;

      - ускорение свободного падения, .

5. Измерения повторить ещё два раза при той же разности уровней воды в коленах манометра , рассчитать среднее значение времени  из этих трёх измерений.

6. По формуле (9) вычислить коэффициент динамической вязкости воздуха (в СИ), где , .

7. По формуле (5) рассчитать коэффициент кинематической вязкости воздуха, где  - плотность воздуха, .

8. По формуле (10) вычислить число Рейнольдса, где ; где  - площадь поперечного сечения капилляра, .

9. Рассчитать погрешности измерений:

,

где ;

     ;

     ;

     ;

     .

;

.

10. Результаты измерений и вычислений занести в таблицу № 1.

Примечание.

Если время вытекания одного и того же объёма воды определяется при несколько отличающихся разностях давлений, усреднять это время нельзя. В этом случае коэффициент динамической вязкости рассчитывается три раза, а затем находится его среднее значение.

Таблица № 1.

NN

n/n

1

2

3

4. Контрольные вопросы.

1. Коэффициент динамической вязкости газов - его определение, физический смысл и единицы измерения в СИ.

2. От каких параметров зависит коэффициент динамической вязкости газов?

3. Как объяснить различие в зависимости от температурного коэффициента динамической вязкости газов и жидкостей?

4. Почему, несмотря на истечение воды из баллона, с некоторого момента устанавливается постоянная разность давлений  в манометре?

5. Литература.

1. Трофимова Т.И. «Курс физики». М., Высшая школа, 1990.

2. Стрелков С.П. «Механика». М., Наука, 1965.

3. Физический практикум под редакцией В.И. Ивероновой. «Механика и молекулярная физика». М., Наука, 1967.

4. Савельев И.В. «Курс общей физики в пяти книгах». М., АСТРЕЛЬ. А.С.Т., 2003.


 

А также другие работы, которые могут Вас заинтересовать

15050. Қазақ батырлары және көркем әдебиет 75.5 KB
  ҚАЗАҚ БАТЫРЛАРЫ ЖӘНЕ КӨРКЕМ ӘДЕБИЕТ Ел тағдырын өз тағдырынан биік қойған ұлтының тұтастығын жерінің бүтіндігін мұрат еткен қазақ батырлары қазақ тарихының әр белесінде тұлғалық деңгейге көтеріліп отырған. Яғни олар ұлттық тұлға болған.Осы ұлттық тұлға биігіне кі...
15051. Қазақ газетінде көтерілген мәселелер 48.5 KB
  Қазақ газетіндегі көтерілген оқу тәрбие мәселелері. Қазақ қоғамдық саяси және әдеби газет 1913 жылы 2 ақпаннан бастап Орынборда аптасына бір рет 1915 жылы аптасына екі рет шығып тұрған. Тиражы 3000 кейбір мағлұматтарда 8000ға жеткен. Бірінші редакто
15052. Қазақ әдебиеті - жалпы шолу, энциклопедиялық мақала 62.94 KB
  Қазақ әдебиеті ҚАЗАҚ ӘДЕБИЕТI қазақ халқының ғасырлар қойнауынан ұрпақтан ұрпаққа жеткен рухани мәдени мұрасы сөз өнерiнiң асыл қазынасы. Қазақтың сөз өнерiнiң тегi әрiден түркi тiлдес тайпалардың өз алдына халық болып қалыптаспай тұрған кезiнен басталады. Халық фо
15053. Қазақ әдебиеті - тұлғаның рухани дамуының бастауы 62.5 KB
  ҚАЗАҚ ӘДЕБИЕТІТҰЛҒАНЫҢ РУХАНИ ДАМУЫНЫҢ БАСТАУЫ Ш. А.Өсерова А.Б.Бөгенбаева Жамбыл атындағы №5 орта мектеп Тараз қ. Әр халықтың тәлімтәрбиелік мұрасы ұлттық мәдениетінің маңызды белгісі болып табылады. Осы арқылы ол ұлттың ұлттық тәрбиесінің ере...
15055. Қазақ әдебиетіндегі айтыс өнерінің өзіндік өрнегі 63 KB
  ӘӨЖ ҚАЗАҚ ӘДЕБИЕТІНДЕГІ АЙТЫС ӨНЕРІНІҢ ӨЗІНДІК ӨРНЕГІ Г.А.Жұмабекова Тараз мемлекеттік педагогикалық институты Тараз қ. Қазақ әдебиетінің қайталанбас хас ерекшеліктері аз емес.Осы орайда ауыз әдебиеті үлгілерінің кемел жазба әдебиетке ойысу ұласу үрдісін...
15056. Қазақ әдебиетіндегі терме жанрының қалыптасуы мен дамуы 77.5 KB
  ҚАЗАҚ ӘДЕБИЕТІНДЕГІ ТЕРМЕ ЖАНРЫНЫҢ ҚАЛЫПТАСУЫ МЕН ДАМУЫ М.Т. Мұқашева №8 Төле би атындағы гимназия Тараз қ. Қазақы сөз арнау дәстүрі түрлі жанрлық тақырыптық сипатымен өзге түрік халықтарына қарағанда өте бай. Ең бастысы байырғы рухан
15057. Қазақ әдебиетінің ежелгі дәуірі, көне Түркі ескерткіштері 83 KB
  Қазақ әдебиетінің ежелгі дәуірі: көне Түркі ескерткіштері Ежелгі дәуір әдебиет VIIXIV ғғ. деп аталатын жеті ғасырды қамтыған әдебиетіміздің ұзақ тарихына қатысты ескерткіштер шығармалар аз емес. Олардың алғашқылары деп түркі рутайпаларына ортақ Орхон ескерткішт...
15058. Қазақ әдебитеті пәні бойынша ҰБТ-ге дайындаудың тиімді жолдары 116.5 KB
  ҚАЗАҚ ТІЛІ МЕН ӘДЕБИЕТ ПӘНІ БОЙЫНША ОҚУШЫЛАРДЫ БІРІҢҒАЙ ҰЛТТЫҚ ТЕСТІЛЕУГЕ ДАЙЫНДАУДЫҢ ТИІМДІ ЖОЛДАРЫ Манабаева Гүлбайрам Рахымқызы қазақ тілі мен әдебиеті пәнінің мұғалімі №35 жалпы орта білім беру мектебі Қазақ әдебиетінде өзіндік айтулы із қалдырған белгі