23386

Определение коэффициента поверхностного натяжения жидкости

Лабораторная работа

Физика

Нехаенко Определение коэффициента поверхностного натяжения жидкости Методические указания к выполнению лабораторной работы № 3 по курсу молекулярной физики. Каждая молекула жидкости в течение некоторого времени колеблется около определённого положения равновесия после чего скачком переходит в новое положение отстоящее от исходного на расстоянии порядка межатомного. На молекулу жидкости со стороны окружающих её молекул действуют силы взаимного притяжения которые с расстоянием быстро убывают. Выделим внутри жидкости какуюлибо молекулу А...

Русский

2013-08-05

276 KB

20 чел.

PAGE  - 9 -

Московский государственный технический

университет им. Н.Э. Баумана.

Калужский филиал.

Т.С. Китаева, Р.В. Нехаенко

«Определение коэффициента поверхностного натяжения жидкости»

Методические указания к выполнению лабораторной работы № 3

по курсу молекулярной физики.

Калуга 2007 г.

Целью настоящей работы является определение коэффициента поверхностного натяжения воды по методу отрыва кольца.

1. Теоретическая часть.

Жидкость является агрегатным состоянием вещества, промежуточным между газообразным и твёрдым, поэтому она обладает свойствами как газообразных, так и твёрдых веществ.

Каждая молекула жидкости в течение некоторого времени колеблется около определённого положения равновесия, после чего скачком переходит в новое положение, отстоящее от исходного на расстоянии порядка межатомного.

На молекулу жидкости со стороны окружающих её молекул действуют силы взаимного притяжения, которые с расстоянием быстро убывают. Следовательно, начиная с некоторого минимального расстояния силами притяжения между молекулами можно пренебречь. Это расстояние (порядка ) называется радиусом молекулярного действия , а сфера радиуса  - сферой молекулярного действия.

Выделим внутри жидкости какую-либо молекулу «А» и проведём вокруг неё сферу радиуса  (Рис. 1.).

Силы, с которыми молекулы, находящиеся внутри сферы, действуют на молекулу «А», направлены в разные стороны, и в среднем скомпенсированы.

Рис. 1. Положение молекул внутри жидкости и вблизи её поверхности («А» и «В»).

Поэтому результирующая сила, действующая на молекулу внутри жидкости со стороны других молекул, равна нулю.

Если молекула «В» расположена от поверхности жидкости на расстоянии, меньшем чем , то сфера молекулярного действия расположена частично внутри жидкости, частично над жидкостью (в газе), при этом концентрация молекул газа мала по сравнению с их концентрацией в жидкости.

В силу этого равнодействующая сила , приложенная к каждой молекуле поверхностного слоя, не равна нулю и направлена внутрь жидкости.

Для перемещения молекулы из глубины жидкости в поверхностный слой необходимо затратить работу, которая совершается силами, действующими на молекулу в поверхностном слое и отрицательна по знаку. В результате кинетическая энергия молекулы уменьшается, превращаясь в потенциальную энергию. То есть, молекулы поверхностного слоя жидкости обладают большей потенциальной энергией, чем молекулы внутри жидкости. Эта дополнительная (избыточная) потенциальная энергия молекул поверхностного слоя жидкости называется поверхностной энергией . Она пропорциональна площади слоя :

,                                                                                                                      (1)

где  -  коэффициент поверхностного натяжения.

Откуда

                                                                                                                          (2)

Условием устойчивого равновесия жидкости является минимум поверхностной энергии. Это означает, что жидкость при отсутствии внешних сил будет принимать такую форму, чтобы при заданном объёме она имела наименьшую площадь поверхности (форму шара), то есть жидкость стремится сократить площадь свободной поверхности. В этом случае поверхностный слой жидкости можно уподобить растянутой упругой плёнке, в которой действуют силы поверхностного натяжения. Эти силы направлены по касательной к поверхности жидкости и перпендикулярны участку контура, на который они действуют.

Рассмотрим поверхность жидкости, ограниченную замкнутым контуром  (Рис. 2.). Под действием сил поверхностного натяжения свободная поверхность жидкости сократилась, и рассматриваемый контур переместился из положения (1) в положение (2). (Силы поверхностного натяжения направлены по касательной к поверхности жидкости и перпендикулярны участку контура, на который они действуют.)

Силы, действующие со стороны выделенного участка на граничащие с ним участки, совершают работу:

,

где  - сила поверхностного натяжения, действующая на единицу длины контура поверхности жидкости.

Тогда

                                                                                              (3)

Эта работа (3) совершается за счёт уменьшения поверхностной энергии:

                                                                                                                         (4)

Рис. 2. Поверхность жидкости, ограниченная замкнутым контуром .

Сравнивая выражения (1), (3), (4), имеем:

                                                                                                                             (5)

То есть коэффициент поверхностного натяжения  равен силе поверхностного натяжения, действующей на единицу длины контура, ограничивающего поверхность.

Единица измерения коэффициента поверхностного натяжения в СИ - ньютон на метр,  или джоуль на квадратный метр, .

Большинство жидкостей при температуре  имеют коэффициент поверхностного натяжения порядка . Так для воды эта величина равна .

Коэффициент поверхностного натяжения с повышением температуры уменьшается, так как увеличивается среднее расстояние между молекулами жидкости.

Кроме того,  существенным образом зависит от примесей, имеющихся в жидкости.

Вещества, ослабляющие поверхностное натяжение жидкости, называются поверхностно-активными. Например, по отношению к воде к ним относятся спирты, мыло, нефть, и др.

Другие вещества (сахар, соль) увеличивают поверхностное натяжение жидкости благодаря тому, что их молекулы взаимодействуют с молекулами жидкости сильнее, чем молекулы жидкости между собой.

2. Экспериментальная часть.

Существует ряд методов определения коэффициента поверхностного натяжения жидкости. Рассмотрим один из них - метод отрыва кольца.

Суть метода состоит в том, что измеряются силы, которые необходимо приложить, чтобы оторвать тонкостенное металлическое кольцо от поверхности жидкости - воды.

Экспериментальная установка представляет собой стойку A, на которой укреплена миллиметровая шкала S для измерения удлинения пружины с указателем С, чашечкой В и кольцом К. Кроме этого имеются два сосуда М и N с водой, соединённые резиновой трубкой, и столик R (Рис. 3.).

Рис. 3. Экспериментальная установка для определения коэффициента поверхностного натяжения воды по методу отрыва кольца.

Согласно определению (5) коэффициент поверхностного натяжения равен:

,

где  - сила поверхностного натяжения, действующая по длине окружности  внешнего и внутреннего диаметров кольца. Для её определения кольцо К приводится в соприкосновение с водой, а затем отрывается от неё. В момент отрыва кольца от поверхности воды сила поверхностного натяжения  равна силе натяжения пружины.

Длина  находится по формуле:

,                                                                                                                 (6)

где ,  - внешний и внутренний диаметры кольца.

Если толщина кольца , то .

Тогда

                                                                                                                 (7)

Следовательно:

                                                                                                               (8)

Измерив силу поверхностного натяжения , а также диаметр кольца  и толщину кольца , по формуле (8) можно рассчитать коэффициент поверхностного натяжения воды.

3. Выполнение эксперимента.

1. Градуировка пружины C и построение градуировочного графика.

На чашечку B положить поочерёдно гирьки  (грамм-сила), , , , , отмечая в делениях соответствующие значения указателя на шкале S. Результаты измерения записать в таблицу №1.

Таблица № 1. Градуировка пружины C.

1

2

3

4

5

Построить график зависимости  на миллиметровой бумаге, отложив по горизонтальной оси , по вертикальной оси .

2. Определение силы поверхностного натяжения .

Кольцо K привести в соприкосновение с водой. Для этого наклонённый сосуд N необходимо поднимать вверх так, чтобы вода могла перетекать в сосуд M до тех пор, пока кольцо слегка коснётся поверхности воды. Вода начнёт подниматься по стенкам кольца, а само кольцо несколько втянется внутрь жидкости. Этот эффект можно заметить по небольшому растяжению пружины.

Затем сосуд N медленно опускать, при этом следить за указателем пружины, так как пружина начинает постепенно растягиваться.

В момент отрыва кольца от поверхности воды записать положение указателя пружины по шкале в делениях (). Измерение следует повторить три раза, записывая каждый раз , , .

Сила поверхностного натяжения, действующая по длине внешнего и внутреннего диаметров кольца, в момент отрыва его от поверхности воды равна силе натяжения пружины.

По графику зависимости  определить силы поверхностного натяжения , ,  в грамм-силах, соответствующие значениям , ,  в делениях.

3. По формуле (8) вычислить , , , подсчитать результат в СИ. При этом , , .

4. Вычислить среднее значение коэффициента поверхностного натяжения воды и погрешности измерений.

1) Среднее значение :

,

где .

2) Относительная погрешность измерений:

,

где ,

      - среднее значение положений указателя пружины, ,

     ,

     .

3) Абсолютная погрешность измерений:

.

4) Окончательный результат:

.

5) Результаты измерений и вычислений занести в таблицу № 2.

Таблица № 2.

NN n/n

1

2

3

4. Контрольные вопросы.

1. Объясните механизм возникновения поверхностного натяжения жидкостей.

2. Физический смысл и единицы измерения коэффициента поверхностного натяжения жидкости.

3. От чего зависит коэффициент поверхностного натяжения для данной жидкости?

4. Почему коэффициенты поверхностного натяжения для различных жидкостей различны?

5. Литература.

1. Савельев И.В. «Курс общей физики: учебное пособие». Т. 2. М., Наука, 1988.

2. Трофимова Т.И. «Курс общей физики: учебное пособие для вузов». 2 изд. М., Высшая школа, 1990.

3. Физический практикум под редакцией В.И. Ивероновой: учебное пособие. М., Наука, 1967.

4. Савельев И.В. «Курс общей физики в пяти книгах». М., АСТРЕЛЬ. А.С.Т., 2003.


 

А также другие работы, которые могут Вас заинтересовать

25104. Суррогатное материнство 39 KB
  Для многих семей сегодня не существует проблемы искусственного оплодотворения и с моральной точки зрения. Этический вопрос искусственного оплодотворения интересовал человечество ещё с конца XVII века. Первые попытки искусственного оплодотворения были совершены ещё в середине ХХ ст. Первый успех в области искусственного оплодотворения ученые смогли получить только в 1973 году.
25105. Перші етичні уявлення 39 KB
  Етика входить до складу філософського знання. в праці Нікомахова етика утворив іменник етика та прикметник етичний. Етика виникає в лоні філософії тому вона органічно пов'язана зі всіма основними її розділами: онтологією вченням про буття гносеологією теорією пізнання аксіологією вченням про цінності праксеологією вченням про практику буття людини. З'ясовуючи сенс життя етика повинна вийти на основоположні проблеми буття людини як особистості.
25106. Любов 35 KB
  Любов це завжди подія не залежна від людини. Любов не надається моральним оцінкам. Сенсом людської любові взагалі є виправдання і спасіння індивідуальності через жертву егоїзму. Любов це самовіддача подолання егоїзму.
25107. Российское общество начала XX в. 658.5 KB
  Население России в 1897 г. Смертность населения в России была одной из самых высоких в Европе. Сословия России В начале XX в. Дворян в России называли благородным сословием.
25108. Советско-германский договор о ненападении (август 1939 г.). Советско-финская война 606.5 KB
  в Москве проходили переговоры представителей СССР и англофранцузского блока. Одновременно СССР вел переговоры с Германией. СССР объявил о своём нейтралитете. Кроме того в соответствии с секретным соглашением с Германией СССР получил возможность передвинуть на запад собственные границы.
25109. Ранняя история славянских народов; выделение восточного славянства 335.5 KB
  говорится о том что киевский князь Владимир Святославич захватив Киев и начав в нём княжить ещё до крещения Руси поставил на Горе недалеко от княжеского дворца деревянные идолы богов: Перуна Хорса Дажьбога Стрибога Симергла и Макоши. Языческая религия постепенно переставала быть связующим звеном между различными социальными группами в Киевской Руси Рано или поздно она должна была уступить место другой религии которая могла бы в той или иной мере удовлетворить интересы всех социальных прослоек. Всю культуру Киевской Руси...
25110. Эпоха царя Ивана Грозного. Россия в XVI–начале XVII в. 372.5 KB
  в России было 160 городов. Обмен продуктами в России совершался на основе географического разделения труда. С Востока в России поступали китайские ткани фарфор драгоценности. в России уже было 25 000 стрельцов.
25111. Пётр I и политическая борьба 80-х годов XVII в. 424.5 KB
  Возглавлял правительство фаворит Софьи князь Василий Голицын широко образованный человек полиглот книжник сторонник сближения России с Западом. Есть сведения что князь хотел отменить крепостное право в России. Голицын предпринял два Крымских похода которые окончились неудачно и стоили России людских потерь и огромных затрат. или время петровских реформ это переломная эпоха в истории России.
25112. Экономическое, социальное и политическое развитие России в начале XIX в. 642 KB
  Социальносословный и национальный состав населения России К началу XIX в. При Екатерине Великой к России отошли Правобережная Украина Белоруссия Литва часть Польши Новороссия земли по Кубани и Тереку Камчатка Приморье Аляска чуть позже Восточная Грузия. Быстро росло население России.