23618

Методы передачи данных канального уровня

Лекция

Информатика, кибернетика и программирование

Канальный уровень оперирует кадрами данных и обеспечивает синхронизацию между приемником и передатчиком на уровне кадров. В обязанности приемника входит распознавание начала первого байта кадра, распознавание границ полей кадра и распознавание признака окончания кадра.

Русский

2014-10-12

172.5 KB

8 чел.

Лекция 7.

Методы передачи данных канального уровня

При обмене данными на физическом уровне единицей информации является бит, поэтому средства физического уровня всегда поддерживают побитовую синхронизацию между приемником и передатчиком.

Канальный уровень оперирует кадрами данных и обеспечивает синхронизацию между приемником и передатчиком на уровне кадров. В обязанности приемника входит распознавание начала первого байта кадра, распознавание границ полей кадра и распознавание признака окончания кадра.

Канальный уровень реализует два режима передачи данных:

  •  синхронный;
  •  асинхронный.

Асинхронный режим используется в тех случаях, когда абоненты генерируют данные в случайные моменты времени.

В асинхронном режиме каждый байт данных (Рисунок 32.) сопровождается специальными сигналами "старт" и "стоп". Назначение этих сигналов состоит в том, чтобы, во-первых, известить приемник о приходе данных и, во-вторых, чтобы дать приемнику достаточно времени для выполнения некоторых функций, связанных с синхронизацией, до поступления следующего байта. Сигнал "старт" имеет продолжительность в один тактовый интервал, а сигнал "стоп" может длиться один, полтора или два такта, поэтому говорят, что используется один, полтора или два бита в качестве стопового сигнала, хотя пользовательские биты эти сигналы не представляют.

Рисунок 32. Асинхронный режим передачи данных

Асинхронным этот режим называют потому, что каждый байт может быть несколько смещен во времени относительно побитовых тактов предыдущего байта. Такая асинхронность передачи байт не влияет на корректность принимаемых данных, так как в начале каждого байта происходит дополнительная синхронизация приемника с источником за счет битов "старт". Более "свободные" временные допуски определяют низкую стоимость оборудования асинхронной системы.

При синхронном режиме (Рисунок 33.) передачи старт-стопные биты между каждой парой байт отсутствуют. Пользовательские данные собираются в кадр, который предваряется словами синхронизации. Слово синхронизации — это байт или несколько байтов, содержащих заранее известный код, который оповещает приемник о приходе кадра данных. При его получении приемник должен войти в байтовый синхронизм с передатчиком, то есть правильно понимать начало очередного байта кадра. й

Рисунок 33. Синхронный режим передачи данных

Несколько синхробайт применяются для обеспечения более надежно синхронизации приемника и передатчика. Так как при передаче длинного кадра у приемника могут появиться проблемы с синхронизацией бит, то в этом случае используются самосинхронизирующиеся коды.

Методы коммутации

В сети абоненты соединяются с коммутаторами индивидуальными линиями связи, закрепленными за ними в данный момент времени. Между коммутаторами линии связи разделяются несколькими абонентами, то есть используются совместно.

Существует три принципиально различные схемы коммутации абонентов в сетях: коммутация каналов (circuit switching), коммутация пакетов (packet switching), коммутация сообщений (message switching). Каждая из этих схем имеет свои преимущества и недостатки, но по долгосрочным прогнозам специалистов будущее принадлежит технологии коммутации пакетов, как более гибкой и универсальной.

Как сети  с коммутацией пакетов, так и сети с коммутацией каналов можно разделить на два класса по другому признаку — на сети с динамической коммутацией и сети с постоянной коммутацией.

В первом случае сеть разрешает устанавливать соединение по инициативе пользователя сети. Коммутация выполняется на время сеанса связи, а затем (опять же по инициативе одного из взаимодействующих пользователей) связь разрывается. В общем случае пользователь сети может соединиться с любым другим пользователем сети. Обычно период соединения между парой пользователей при динамической коммутации составляет от нескольких секунд до нескольких часов и завершается при выполнении определенной работы — передачи файла, просмотра страницы текста или изображения и т.п.

Во втором случае сеть не предоставляет пользователю возможность выполнить динамическую коммутацию с другим произвольным пользователем сети. Вместо этого сеть разрешает паре пользователей заказать соединение на длительный период времени. Соединение устанавливается не пользователем, а персоналом, обслуживающим сеть. Время, на которое устанавливается постоянная коммутация, измеряется обычно несколькими месяцами. Режим постоянной коммутации в сетях с коммутацией каналов часто называется сервисом выделенных или арендуемых каналов.

Примерами сетей, поддерживающих режим динамической коммутации, являются телефонные сети общего пользования, локальные сети, сети TCP/IP.

Наиболее популярными сетями, работающими в режиме постоянной коммутации, сегодня являются сети технологии PDH, SDH, на основе которых строятся выделенные каналы связи с пропускной способностью в несколько Гбит в секунду.

Некоторые типы сетей поддерживают оба режима работы. Например, сети Х.25 и АТМ могут предоставлять пользователю возможность динамически связаться с любым другим пользователем сети и в то же время отправлять данные по постоянному соединению одному вполне определенному абоненту.

Коммутация каналов подразумевает образование непрерывного составного физического канала из последовательно соединенных отдельных канальных участков для прямой передачи данных между узлами. Отдельные каналы соединяются между собой специальной аппаратурой — коммутаторами (мультиплексорами), которые могут устанавливать связи между любыми конечными узлами сети. В сети с коммутацией каналов перед передачей данных всегда необходимо выполнить процедуру установления соединения, в процессе которой и создается канал.

Коммутаторы, а также соединяющие их каналы должны обеспечивать одновременную передачу данных нескольких абонентских каналов. Для этого они должны быть высокоскоростными и поддерживать технику мультиплексирования: частотное мультиплексирование (FDM), мультиплексирование с разделением времени (TDM).

Коммутация каналов на основе частотного мультиплексирования (Рисунок 34.) была разработана для телефонных сетей, но применяется также в кабельном телевидении.

Для разделения абонентских каналов характерна техника модуляции высокочастотного несущего синусоидального сигнала низкочастотным речевым сигналом (300 - 3400 Гц). Если сигналы каждого абонентского канала перенести в свой собственный диапазон частот, то в одном широкополосном канале можно одновременно передавать сигналы нескольких абонентских каналов. Чтобы низкочастотные составляющие сигналов разных каналов не смешивались между собой, полосы делают шириной в 4 кГц, оставляя между ними страховой промежуток 900 Гц. В канале между двумя FDM-коммутаторами одновременно передаются сигналы всех абонентских каналов, но каждый из них занимает свою полосу частот. Такой канал называют уплотненным.

Рисунок 34 Коммутация каналов на основе частотного мультиплексирования

В сетях на основе FDM-коммутации принято несколько уровней иерархии уплотненных каналов.

Первый уровень уплотнения образуют 12 абонентских каналов, которые составляют базовую группу каналов, занимающую полосу частот шириной в 48 кГц с границами от 60 до 108 кГц. Второй уровень уплотнения образуют 5 базовых групп, которые составляют супергруппу, с полосой частот шириной в 240 кГц и границами от 312 до 552 кГц. Супергруппа передает данные 60 абонентских каналов тональной частоты. Десять супергрупп образуют главную группу, которая используется для связи между коммутаторами на больших расстояниях. Главная группа передает данные 600 абонентов одновременно и требует от канал связи полосу пропускания шириной не менее 2520 кГц с границами от 564 до 3084 кГц.

Коммутаторы FDM могут выполнять как динамическую, так и постоянную коммутацию. При динамической коммутации один абонент инициирует соединение с другим абонентом, посылая в сеть номер вызываемого абонента. Коммутатор динамически выделяет данному абоненту одну из свободных полос своего уплотненного канала. При постоянной коммутации за абонентом полоса в 4 кГц закрепляется на длительный срок путем настройки коммутатора по отдельному входу, недоступному другим пользователям.

Принцип коммутации на основе разделения частот остается неизменным и в сетях другого вида, меняются только границы полос, выделяемых отдельному абонентскому каналу, а также количество низкоскоростных каналов в уплотненном высокоскоростном.

Коммутация каналов на основе разделения времени (Рисунок 35.) была разработана для передачи дискретных данных.

Аппаратура TDM-сетей — мультиплексоры, коммутаторы, демультиплексоры — работает в режиме разделения времени, поочередно обслуживая в течение цикла своей работы все абонентские каналы. Цикл работы оборудования TDM равен 125 мкс, что соответствует периоду следования замеров голоса в цифровом абонентском канале. Это значит, что мультиплексор или коммутатор успевает вовремя обслужить любой абонентский канал и передать его очередной замер далее по сети. Каждому соединению выделяется один квант времени цикла работы аппаратуры, называемый тайм-слотом. Длительность тайм-слота зависит от числа абонентских каналов, обслуживаемых мультиплексором TDM или коммутатором.

Рисунок 35 Коммутация каналов на основе временного мультиплексирования

Мультиплексор принимает информацию по N входным каналам от конечных абонентов, каждый из которых передает данные по абонентскому каналу со скоростью 64 Кбит/с — 1 байт каждые 125 мкс. В каждом цикле мультиплексор выполняет следующие действия: прием от каждого канала очередного байта данных, составление из принятых байтов уплотненного кадра, называемого также обоймой, передача уплотненного кадра на выходной канал с битовой скоростью, равной N*64 Кбит/с.

Порядок байт в обойме соответствует номеру входного канала, от которого этот байт получен. Количество обслуживаемых мультиплексором абонентских каналов зависит от его быстродействия. Например, мультиплексор Т1, представляющий собой первый промышленный мультиплексор, работавший по технологии TDM, поддерживает 24 входных абонентских канал, создавая на выходе обоймы стандарта Т1, передаваемые с битовой скоростью 1,544 Мбит/с.

Коммутатор принимает уплотненный кадр по скоростному каналу от мультиплексора и записывает каждый байт из него в отдельную ячейку своей буферной памяти, причем в том порядке, в котором эти байты были упакованы в уплотненный кадр. Для выполнения операции коммутации байты извлекаются из буферной памяти не в порядке поступления, а в таком порядке, который соответствует поддерживаемым в сети соединениям абонентов. "Перемешивая" нужным образом байты в обойме, коммутатор обеспечивает соединение конечных абонентов в сети.

Демультиплексор выполняет обратную задачу — он разбирает байты уплотненного кадра и распределяет их по своим нескольким выходным каналам, при этом он считает, что порядковый номер байта в обойме соответствует номеру выходного канала.

Однажды выделенный номер тайм-слота остается в распоряжении соединения "входной канал - выходной слот" в течение всего времени существования этого соединения, даже если передаваемый трафик является пульсирующим и не всегда требует захваченного количества тайм-слотов. Это означает, что соединение в сети TDM всегда обладает известной и фиксированной пропускной способностью, кратной 64 Кбит/с. Сети, использующие технику TDM, требуют синхронной работы всего оборудования. Нарушение синхронности разрушает требуемую коммутацию абонентов, так как при этом теряется адресная информация, поэтому перераспределение тайм-слотов между различными каналами в оборудовании TDM невозможно, даже если на входе канала нет информации (абонент молчит).

Сети TDM могут поддерживать либо режим динамической коммутации, либо режим постоянной коммутации. Сегодня практически все данные — голос, изображение, компьютерные данные — передаются в цифровой форме. Поэтому выделенные каналы TDM-технологии, которые обеспечивают нижний уровень для передачи цифровых данных, являются универсальными каналами для построения сетей любого типа: телефонных, телевизионных и компьютерных.

Сети с коммутацией каналов хорошо приспособлены для коммутации долговременных синхронных потоков данных между двумя абонентами, добавляя к ним минимум служебной информации для маршрутизации данных через сеть.

Недостатками сетей с коммутацией каналов являются:

  •  невозможность применения пользовательской аппаратуры, работающей с разной скоростью, так как в сети не выполняется буферизация данных,
  •  возможность отказа в соединении из-за занятости коммутатора или абонента,
  •  неэффективность в условиях пульсирующего трафика.

Обеспечение дуплексного режима работы. В зависимости от направления возможной передачи данных способы передачи данных по линии связи делятся на следующие типы:

  •  Симплексный — передача осуществляется по линии связи только в одном направлении,
  •  Полудуплексный — передача ведется в обоих направлениях, но попеременно во времени,
  •  Дуплексный — передача ведется одновременно в двух направлениях.

Дуплексный режим работы — наиболее универсальный и производительный способ работы канала. Самым простым вариантом организации дуплексного режима является использование двух независимых физических каналов  в кабеле, каждый из которых работает в симплексном режиме, то есть передает данные в одном направлении. Именно такая идея лежит в основе реализации дуплексного режима работы во многих сетевых технологиях, например Fast Ethernet  или ATM.

Когда для дуплексного обмена данными используется всего один физический канал, то организация дуплексного режима работы выполняется на основе разделения канала на два логических подканала с помощью техники FDM или TDM.

Модемы для организации дуплексного режима работы на двухпроводной линии применяют технику FDM. Модемы, использующие частотную модуляцию, работают на четырех частотах: две частоты — для кодирования единиц и нулей в одном направлении, а остальные две частоты — для передачи данных в другом направлении.

При цифровом кодировании дуплексный режим на двухпроводной линии организуется с помощью техники TDM. Часть тайм-слотов используется для передачи данных в одном направлении, а часть  — для передачи в другом направлении. Обычно тайм-слоты противоположных направлений чередуются, из-за чего такой способ иногда называют "пинг-понговой" передачей. TDM-разделение линии характерно, например, для цифровых сетей с интеграцией услуг (ISDN) на абонентских двухпроводных окончаниях.

В волоконно-оптических кабелях при использовании одного оптического волокна для организации дуплексного режима работы применяется передача данных в одном направлении с помощью светового пучка одной длины волны, а в обратном — другой длины волны. Такая техника относится к методу FDM, однако для оптических кабелей она получила название разделения по длине волны (Wave Division Multiplexing, WDM). WDM применяется и для повышения скорости передачи данных в одном направлении, обычно используя от 2 до 16 каналов.

Коммутация пакетов — это техника коммутации абонентов, которая была специально разработана для эффективной передачи компьютерного трафика (Рисунок 36.). Коэффициент пульсации трафика отдельного пользователя сети равен отношению средней интенсивности обмена данными к максимально возможной и может составлять 1:100.

При коммутации пакетов все передаваемые пользователем сети

Рисунок 36. Коммутация пакетов

сообщения разбиваются в исходном узле на сравнительно небольшие части, называемые пакетами. Если сообщения имеют произвольную длину от нескольких байт до многих мегабайт, то для пакетов эти пределы существенно уже — от 46 до 1500 байт. Каждый пакет снабжается заголовком, в котором указывается адресная информация, необходимая для доставки пакета узлу назначения, а также номер пакета, который будет использоваться узлом назначения для сборки сообщения.

Пакеты транспортируются в сети как независимые информационные блоки. Коммутаторы сети принимают пакеты от конечных узлов и на основании адресной информации передают их друг другу, а в конечном итоге — узлу назначения.

Коммутаторы пакетной сети отличаются от коммутаторов каналов тем, что они имеют внутреннюю буферную память для временного хранения пакетов, если выходной порт коммутатора в момент принятия пакета занят передачей другого пакета. В этом случае пакет находится некоторое время в очереди пакетов в буферной памяти выходного порта, а когда до него дойдет очередь, то он передается следующему коммутатору. Такая схема передачи данных позволяет сглаживать пульсации трафика на магистральных связях между коммутаторами и тем самым использовать их наиболее эффективным образом для повышения пропускной способности сети в целом.

Сеть с коммутацией пакетов замедляет процесс взаимодействия конкретной пары абонентов, так как их пакеты могут ожидать в коммутаторах, пока по магистральным связям передаются другие пакеты, пришедшие в коммутатор ранее. Тем не менее, общий объем передаваемых сетью компьютерных данных  в единицу времени при технике коммутации пакетов будет выше, чем при технике коммутации каналов. Если число обслуживаемых абонентов велико, то коммутаторы будут постоянно и достаточно равномерно загружены работой.

Режим передачи пакетов между двумя конечными узлами сети с независимой маршрутизацией каждого пакета называют дейтаграммным. При его использовании коммутатор может изменить маршрут какого-либо пакета в зависимости от состояния сети — работоспособности каналов и других коммутаторов, длины очередей пакетов в соседних коммутаторах и т.п.

Существует и другой режим работы сети — передача пакетов по виртуальному каналу. В этом случае перед тем, как начать передачу данных между двумя конечными узлами, должен быть установлен виртуальный канал, который представляет собой единственный маршрут, соединяющий эти конечные узлы. Виртуальный канал может быть динамическим или постоянным. Динамический виртуальный канал устанавливается при передаче в сеть специального пакета — запроса на установление соединения. Этот пакет проходит через коммутаторы и "прокладывает" виртуальный канал. Это означает, что коммутаторы запоминают маршрут для данного соединения и при поступлении последующих пакетов данного соединения отправляют их всегда по проложенному маршруту. Постоянные виртуальные каналы создаются администраторами сети путем ручной настройка коммутаторов. При отказе коммутатора или канала на пути виртуального канала соединение разрывается, и виртуальный канал нужно прокладывать заново. При этом он, естественно, обойдет отказавшие участки сети.

Каждый режим передачи пакетов имеет свои преимущества и недостатки. Дейтаграммный метод не требует предварительного установления соединения и поэтому работает без задержки перед передачей данных. Это особенно выгодно для передачи небольшого объема данных, когда время установления соединения может быть соизмеримым  со временем передачи данных. Кроме того, дейтаграммный метод быстрее адаптируется к изменениям в сети.

При использовании метода виртуальных каналов время, затраченное на установление виртуального канала, компенсируется последующей быстрой передачей всего потока пакетов. Коммутаторы распознают принадлежность пакета к виртуальному каналу по специальной метке — номеру виртуального канала, а не анализируют адреса конечных узлов, как это делается при дейтаграммном методе.

Коммутация сообщений подразумевает передачу единого блока данных между транзитными компьютерами сети с временной буферизацией этого блока на диске каждого компьютера. Сообщение в отличие от пакета имеет произвольную длину, которая определяется не технологическими соображениями, а содержанием информации, составляющей сообщение. Например, сообщением может быть текстовый документ, файл с кодом программы, электронное письмо.

Транзитные компьютеры могут соединяться между собой как сетью с коммутацией пакетов, так и сетью с коммутацией каналов. Сообщение хранится в транзитном компьютере на диске, причем время хранения может быть достаточно большим, если компьютер загружен другими работами или сеть временно перегружена.

По такой схеме обычно передаются сообщения, не требующие немедленного ответа, чаще всего сообщения электронной почты. Режим передачи с промежуточным хранением на диске называется режимом "хранение и передача" (store and forward).

Режим коммутации сообщений разгружает сеть для передачи трафика, требующего быстрого ответа, например трафика службы WWW или файловой службы. Техника коммутации сообщений появилась в компьютерных сетях раньше техники коммутации пакетов, но потом была вытеснена последней, как более эффективной по критерию пропускной способности сети. Запись сообщения на диск занимает достаточно много времени, кроме того, наличие дисков предполагает специализированные компьютеры в качестве коммутаторов, что удорожает сеть

Сегодня коммутация сообщений работает только для некоторых неоперативных служб, причем чаще всего поверх сети с коммутацией пакетов, как служба прикладного уровня.


 

А также другие работы, которые могут Вас заинтересовать

2397. Военная сила в международных отношениях 39.01 MB
  Особенности современных международных отношений и международного порядка. Современные взгляды на войны и военные конфликты. Военная безопасность России: понятие, угрозы и особенности ее обеспечения. олитологические основы применения военной силы США. Терроризм — асимметричное проявление силы в международных отношениях.
2398. Вантажопідйомна, транспортуюча та транспортна техніка 894.25 KB
  Побудова циклів роботи механізмів вантажопідйомних машин. Гнучкі елементи впм. Блоки і поліспасти. Деталі для навивання і звивання гнучких елементів. Розрахунок і компоновка механізму підйому вантажопідйомних машин. Розрахунок фундаментів і фундаментних болтів стаціонарних поворотних кранів.
2399. Вантажопідйомна, транспортуюча та транспортна техніка. Методичні вказівки 1.47 MB
  Оцінювання стану вантажопідйомних органів та їх вибраковування. Дослідження роботи силових поліспастів. Визначення геометричних параметрів елементів гакової підвіски та їх порівняння відповідності розрахунковим значенням. Знайомсвто з конструкцією, органами керування баштового крану. Отримання практичних навиків роботи на тренажері крана КБ-403.
2400. Биология. Конспект лекций 203.41 KB
  Строение и функции ядерного аппарата клетки. Деление и размножение клетки. Основы эмбриологии. Особенности наследственности. Методы изучения наследственности и изменчивости у человека. Тератология и медицинская паразитология.
2401. Програмування модуля EEPROM пам’яті. 195.57 KB
  Специфіка програмування модуля EEPROM. Рішення задач. Створення проекту в MPLAB. Створення проекту в PROTEUS.
2402. Вступ до політології 23.58 KB
  Предметом даної дисципліни (політика і права людини) є базова цінність політичного суспільства, яка втілює найважливіші принципи спільного людського буття – права людини. Права людини виступають інструментом підтримки гармонії суспільних відносин усіх рівнів.
2403. Теоретические и методологические подходы к планированию и прогнозированию 23.41 KB
  Сущность и основные понятия планирования и прогнозирования. Структура прогноза национальной экономики, классификация прогнозов. Методологические подходы к планированию и прогнозированию, система показателей и методы.
2404. Іграшки. Урок англійської мови 23.06 KB
  Мета: Ознайомити учнів з буквами I i, T t, N n, O o та їніми звуками, закріпити вимову звуків у мовленні, увести та вчити вживати в усному мовленні прийменники місця (in, on, under), вчити описувати іграшки за допомогою структури It is, розвивати пам'ять, увагу, мислення учнів, виховувати бережливе ставлення до іграшок.
2405. Досудовий (претензійний) порядок врегулювання господарських спорів 24.28 KB
  Мета заняття: закріпити і розширити знання по темі. Оволодіти навичками практичного застосування законодавчих актів при розв’язанні ситуаційних завдань.