23711

Математические выражения и математические модели

Конспект урока

Математика и математический анализ

а Графическая модель: Не известно количество девочек x одна часть и мальчиков но сказано что мальчиков в 3 раза больше x3 или 3x вторая часть всего целое 48 человек. x 3x = 48 x x3 = 48 Используем свойство 1 при умножении: a1 = 1a: 1x 3x = 48 x1 x3 = 48 Используем распределительное свойство умножения: ab c = ab ac: x1 3 = 48 Найдём сумму стоящую в скобках: 4x = 48 x4 = 48 Что бы найти неизвестный множитель надо произведение разделить на известный множитель: x = 48 : 4 x = 12 x ...

Русский

2013-08-05

76.5 KB

4 чел.

Тема: «Математические выражения и математические модели».

Тип урока: развивающий контроль.

Материал: контрольная работа № 2.

Основная цель: формировать способность учащихся к осуществлению процедуры контроля;

формировать способность учащихся к выявлению причин затруднений собственной деятельности;

контроль знаний, умений, навыков по темам:  «Математические выражения» и «Математические модели».

Урок 1

1. Самоопределение к деятельности.

– Какой урок мы проводили накануне? (Мы готовились к контрольной работе).

– По какой теме мы готовились к работе? (Математические модели).

– На прошлых уроках у нас всё получалось и я уверена, что сегодня с контрольной работой вы то же все справитесь. Для успешной работы вспомним основные моменты данных тем.

2. Актуализация знаний.

2. 1. На доске:            

           

            

            

            

           

                                                   

По схемам повторяются основные типы задач и способы их решения.


2. 2. Выполнение контрольной работы № 2.

2.3. Самопроверка по готовому образцу, знаково фиксируются правильно выполненные и неправильно выполненные задания.

Подробный образец выполнения контрольной работы.

Вариант 1.

  1.  48 ч.

Д  М

x  3x

x + 3x = 48,

x = 12

Если x = 12, то 3 · 12 = 36

Ответ: 12 девочек и 36 мальчиков приняло участие в олимпиаде.

2) (250 – 249 · 0) : 50 + 899 + 1 · (83 – 80) – 97 = 810

3) Ответ: длина 11 см, ширина 7 см.

4) а) 42 x;  б) 252.

5) (x + 15)•2 – x•3 = 20  или  2(x + 15) – 3x = 20

(x + 15)•2 – 20 = x•3 или 2(x + 15) - 20 = 3x

x•3 + 20 = (x + 15)•2 или 3x + 20 = 2(x + 15).

6)* 10y + x = 34 + xy.

7)*+ 37549

  3475

41024

Вариант 2.

  1.  x + 2x = 54,

x = 18

Если x = 18, то 2•18 = 36

Ответ: сестра собрала 18 марок, брат собрал 36 марок.

2) 271 – 1•(130 + 120 : 2) + (79 – 59)•1 + 29 = 130.

3) Ответ: ширина 5 м, длина 12 м.

4) а) 44y б) 220.

5) (x + 4)•5 – x•7 = 6  или 5(x + 4) – 7x = 6;

(x + 4)•5 – 6 = x•7 или 5(x + 4) – 6 = 7x;

x•7 + 6 = (x + 4)•5 или 7x + 6 = 5(x + 4)

6)* 10y + x = x + y + 63

7)*+ 26587

   5903

 32490

Правильно выполненное задание фиксируется на полях знаком «+», неправильно выполненное задание знаком «?».

После самопроверки работы сдаются учителю, который проверяет их: либо соглашается с оцениванием ребёнка, обводя в кружок поставленный знак, либо рядом ставит свой, и выставляет оценку в баллах.

Урок 2.

3. Локализация затруднений.

Проговаривается общая цель второго урока.

Учащиеся получают свои работы и анализируют правильность самопроверки работы по образцу.

Учащиеся, допустившие ошибки:

Определяются место ошибки, способы действий, в которых допущены ошибки. Каждый ученик формулирует цель дальнейшей деятельности по исправлению ошибок.

Учащиеся, не  допустившие ошибки:

1) Сверяют свою работу с эталоном.

2) Выполняют задания творческого уровня или выступают в качестве консультантов.

Дополнительные задания: №№ 166; 205; 206.

4. Построение проекта выхода из затруднения.

Учащиеся самостоятельно пытаются выполнить работу над ошибками, повторяя алгоритмы решения задач, нахождения значений числовых и буквенных выражений, если ученик не может самостоятельно определить причину затруднения, ему предоставляется эталон, по которому ученик определяет причину ошибки и видит, как её исправить.

Учащиеся, не допустившие ошибок, продолжают работать над дополнительными заданиями (для проверки выполнения этих заданий учитель готовит эталон выполнения заданий).

Эталон.

  1.  а) Графическая модель:

Не известно количество девочек (x – одна часть) и мальчиков, но сказано, что мальчиков в 3 раза больше (x•3 или 3x – вторая часть), всего (целое) 48 человек.

48 ч.

Д  М

x  3x

б) Математическая модель:

Что бы найти целое надо сложить части.

x + 3x = 48,     x + x•3 = 48,

Используем свойство 1 при умножении: a•1 = 1•a:

1x + 3x = 48,    x•1 + x•3 = 48,

Используем распределительное свойство умножения: a(b + c) = ab + ac:

x(1 + 3) = 48,

Найдём сумму, стоящую в скобках:

4x = 48,     x•4 = 48,

Что бы найти неизвестный множитель надо произведение разделить на известный множитель:

x = 48 : 4,

x = 12

x – количество девочек, значит девочек – 12, что бы найти количество мальчиков надо количество девочек умножить на 3, т.к. по условию мальчиков в 3 раза больше:

3•12 = 36

Ответ: 12 девочек и 36 мальчиков приняло участие в олимпиаде.

2) (250 – 249 · 0) : 50 + 899 + 1 · (83 – 80) – 97 = 810

  1.  249•0 = 0,   I блок:    II блок:
  2.  250 – 0 = 250,  1) 249•0 = 0,   1) 83 – 80 = 3,
  3.  83 – 80 = 3,   2) 250 – 0 = 250,  2) 1•3 = 3,
  4.  250 : 50 = 5,   3) 250 : 50 = 5,
  5.  1•3 = 3,   III блок:
  6.  5 + 899 = 904,  1) 5 + 899 = 904,
  7.  904 + 3 = 907,  2) 904 + 3 = 907,
  8.  907 – 97 = 810.  3) 907 – 97 = 810.

3) Вариант 1.

а) Графическая модель:

Длина, см

Ширина, см

Площадь, см2

x + 4

x

(x + 4)•x или 77

б) Математическая модель:

(x + 4)•x = 77,

Решаем методом проб и ошибок:

Если x = 5, то (5 + 4)•5 = 77,

9•5 = 77,

40 = 77 (Н)

Если x = 7, то (7 + 4)•7 = 77,

11•7 = 77,

77 = 77 (В)

Если x < 7, то (x + 4)•x < 77,

Если x > 7, то (x + 4)•x > 77,

Вариант 2.

а) Графическая модель:

Длина, см

Ширина, см

Площадь, см2

x

x - 4

(x - 4)•x или 77

б) Математическая модель:

(x - 4)•x = 77,

Решаем методом проб и ошибок:

Если x = 5, то (5 - 4)•5 = 77,

1•5 = 77,

5 = 77 (Н)

Если x = 7, то (7 - 4)•7 = 77,

3•7 = 77,

21 = 77 (Н)

Если x =11, то (11 - 4)•11 = 77,

7•11 = 77,

77 = 77 (В)

Если x < 11, то (x - 4)•x < 77,

Если x > 11, то (x - 4)•x > 77,

Ответ: длина 11 см, ширина 7 см.

  Распределительное свойство

4) а) 7x + 12x + 5x + 18x = (7 + 12 + 5 + 18)x = 42x; или 7x + 12x + 5x + 18x = x•(7 + 12 + 5 + 18) = x•42;

б) Если x = 6, то 42•6 = 252, или 6•42 = 252.

5) x руб цена арбуза, (x + 15) руб цена дыни. Что бы найти стоимость 2 дынь надо цену дыни умножить на количество: (x + 15)•2 (руб), стоимость 3 арбузов: x•3 (руб). За дыни заплатили на 20 руб больше, чем за арбузы на основании этого условия можно записать одно из уравнений:

(x + 15)•2 – x•3 = 20  или  2(x + 15) – 3x = 20

(x + 15)•2 – 20 = x•3 или 2(x + 15) - 20 = 3x

x•3 + 20 = (x + 15)•2 или 3x + 20 = 2(x + 15).

6)* x – цифра десятков, y – цифра единиц, двузначное число: 10x + y. Если у числа поменять местами цифры, то y – становится цифрой десятков, а x цифра единиц, двузначное число: 10y + x. Произведение цифр: xy. По условию составляем уравнение: 10y + x = 34 + xy.

7)* Задание решается методом перебора.

+   37549

  3475

41024

Вариант 2.

  1.  а) Графическая модель:

Не известно количество марок у брата и у сестры (x – количество марок у сестры), но сказано, что у брата в 2 раза больше (x•2 или 2x – у брата), всего (целое) 54 марки.

54 м.

С  Б

x  3x

б) Математическая модель:

Что бы найти целое надо сложить части.

x + 2x = 54,     x + x•2 = 54,

Используем свойство 1 при умножении: a•1 = 1•a:

1x + 2x = 54,    x•1 + x•2 = 54,

Используем распределительное свойство умножения: a(b + c) = ab + ac:

x(1 + 2) =54,

Найдём сумму, стоящую в скобках:

3x = 54,     x•3 = 54,

Что бы найти неизвестный множитель надо произведение разделить на известный множитель:

x = 54 : 3,

x = 18

x – количество марок у сестры, значит количество марок у сестры – 18, что бы найти количество марок у брата надо количество марок у сестры умножить на 2, т.к. по условию количество марок у брата в 2 раза больше:

2•18 = 36

Ответ: сестра собрала 18 марок, брат собрал 36 марок.

  1.  271 – 1•(130 + 120 : 2) + (79 – 59)•1 + 29 = 130.

1) 120 : 2 = 60,   I блок:    II блок:

2) 130 + 60 = 190,  1) 120 : 2 = 60,  1) 79 – 59 = 20,

3) 79 – 59 = 20,   2) 130 + 60 = 190,  2) 20•1 = 20,

4) 1•190 = 190,   3) 1•190 = 190,

5) 20•1 = 20,   III блок:

6) 271 – 190 = 81,  1) 271 – 190 = 81,

7) 81 + 20 = 101,  2) 81 + 20 = 101,

8) 101 + 29 = 130.  3) 101 + 29 = 130.

3) а) Графическая модель:

Длина, м

Ширина, м

Площадь, м2

x + 7

x

(x + 7)•x или 60

б) Математическая модель:

(x + 7)•x = 60,

Решаем методом проб и ошибок:

Если x = 5, то (5 + 7)•5 = 60,

12•5 = 60,

60 = 60 (В)

Если x = 7, то (7 + 7)•7 = 60,

14•7 = 60,

98 = 60 (Н)

Если x < 5, то (x + 7)•x < 60,

Если x > 5, то (x + 7)•x > 60,

Вариант 2.

а) Графическая модель:

Длина, м

Ширина, м

Площадь, м2

x

x - 7

(x - 7)•x или 60

б) Математическая модель:

(x - 7)•x = 60,

Решаем методом проб и ошибок:

Если x = 8, то (8 - 7)•8 = 60,

1•8 = 60,

8 = 60 (Н)

Если x = 12, то (12 - 7)•12 = 60,

5•12 = 60,

60 = 60 (В)

Если x =13, то (13 - 7)•13 = 60,

6•13 = 60,

78 = 60 (Н)

Если x < 12, то (x - 7)•x < 60,

Если x > 12, то (x - 7)•x > 60,

Ответ: ширина 5 м, длина 12 м.

Распределительное свойство

4) а) 3y + 15y + 17y + 9y = (3 + 15 + 15 + 17)y = 44y; или 3y + 15y + 17y + 9y = y•(3 + 15 + 15 + 17) = y•44;

б) Если y = 5, то 44•5 = 220, или 5•44 = 220.

5) x деталей делает ученик за час, (x + 4) деталей делает мастер за час. Что бы найти сколько деталей делает мастер за 5 часов надо количество сделанных деталей за час умножить на количество: (x + 4)•5 деталей, ученик сделал за 7 часов: x•7 деталей. Мастер сделал на 6 деталей больше, можно составить одно из уравнений.

(x + 4)•5 – x•7 = 6 или 5(x + 4) – 7x = 6;

(x + 4)•5 – 6 = x•7 или 5(x + 4) – 6 = 7x;

x•7 + 6 = (x + 4)•5 или 7x + 6 = 5(x + 4)

6)* x – цифра десятков, y – цифра единиц, двузначное число: 10x + y. Если у числа поменять местами цифры, то y – становится цифрой десятков, а x цифра единиц, двузначное число: 10y + x. Произведение цифр: xy. По условию составляем уравнение:

10y + x = x + y + 63

7)* Задание решается методом перебора.

+ 26587

   5903

 32490

№ 166.

x – цифра десятков, y – цифра единиц, двузначное число: 10x + y, если между цифрами вставить 0, то получим число: 100x + y и оно больше числа 10x + y в 9 раз: 100x + y = 9(10x + y), используем распределительное свойство умножения:

100x + y = 90x + 9y, используем метод «весов», из обеих частей вычтем по 90x  и y:   100x + y – 90xy= 90x + 9y – 90xy, используем распределительное свойство умножения относительно сложения и вычитания:

10x = 8y,

x принимает значения: 1, 2, 3, 4, 5, 6, 7, 8. 9

Если x = 1, то 10•1 = 8y,

8y = 10, – y не существует,

Если x = 2, то 10•2 = 8y,

8y = 20, – y не существует,

Если x = 3, то 10•3 = 8y,

8y = 30, – y не существует,

Если x = 4, то 10•4 = 8y,

8y = 40,

y = 5, число: 45,

Если x = 5, то 10•5 = 8y,

8y = 50, – y не существует,

Если x = 6, то 10•6 = 8y,

8y = 60, – y не существует,

Если x = 7, то 10•7 = 8y,

8y = 70, – y не существует,

Если x = 8, то 10•8 = 8y,

8y = 80,

y = 10, но y – цифра единиц и не может быть равна 10.

№ 205.

Что бы длина и ширина составили 10 ладоней надо, что бы длина и ширина были равны: 1 и 9; 2 и 8; 3 и 7; 4 и 6; 5 и 5; 6 и 4; 7 и 3; 8 и 2; 9 и 1, но в задаче говорится о четверти ширины, значит ширина должна делится на 4, это числа: 8, 4. Сумма длины и четверти ширины должна ровняться 7 ладоням:

2 + 2 = 7 (Н)

6 + 1 = 7 (В)

Ответ: длина 6 ладоней, ширина 4 ладони.

№ 206.

Ответ: 36 учеников.

5. Обобщение затруднений во внешней речи.

После выполнения работы над ошибками и проверки по эталону проговариваются ошибки, допущенные в работе, так же проговариваются формулировки способов действий, которые вызвали затруднение.

6. Самостоятельная работа с самопроверкой по эталону.

Учащимся предлагается аналогичная работа (может быть другой вариант), из которой они должны выполнить только те задания, которые вызвали затруднения лично у них и проверить свою работу по эталону, фиксируя знаково результаты.

7. Включение в систему знаний и повторение.

Учащиеся, допустившие ошибки:

Выполняют задания, приготовленные учителем, аналогичные заданиям в контрольной работе.

Задания для учащихся:

№№ 211, 215, 212, 150 (4), 103 (3).

Учащиеся, не допустившие ошибки:

№№ 171, 153, 154, 155.

8. Рефлексия деятельности.

– Над какой темой мы работали на уроках?

– Какую цель мы ставили в начале работы?

– Что вызвало затруднение при выполнении работы?

– Оцените свою работу на уроках контроля.

9. Домашнее задание: придумайте задания аналогичные №№ 1, 3, 4 в контрольной работе и выполните их.

8


 

А также другие работы, которые могут Вас заинтересовать

33725. Виды ТО 12.52 KB
  способы программа действий Тактические операции классифицируются по различным основаниям: 1 по характеру следственных ситуаций в условиях которых проводятся тактические операции: а проводимые в простых ситуациях; б проводимые в условиях сложной ситуации; 2 по отношению к предмету доказывания: а способствующие установлению обстоятельств входящих в предмет доказывания; б способствующие установлению вспомогательных фактов; 3 похарактеру и содержанию действий: а состоящие только из следственных действий; б состоящие из различных...
33726. Следственная ситуация 11.77 KB
  Следственная ситуация статикодинамическое состояние процесса раскрытия преступления на определённый момент отражающий своеобразие расследования. уровень и разработанность научных рекомендаций в области расследования. оценка расследуемого события существующая на момент расследования. место время расследования преступления наличие возможности использования в конкретный момент расследования сил средств времени оптимальным образом.
33727. Формы применения специальных знаний при расследовании преступлений 25 KB
  При раскрытии и расследовании преступлений, судебном разбирательстве у следователя или суда возникает необходимость в помощи лиц, обладающих специальными знаниями в различных областях науки, техники, искусства, ремесла. Специальными являются знания, основанные на теоретических познаниях в какой-либо области, а также приобретенные лицом в процессе практической профессиональной деятельности.
33728. Формы участия населения в осуществлении местного самоуправления 62.5 KB
  Формы участия населения в осуществлении местного самоуправления Существуют следующие форму участия населения в осуществлении МСУ согласно закону № 131: 1. Принятое на местном референдуме решение подлежит обязательному исполнению на территории муниципального образования и не нуждается в утверждении какимилибо органами государственной власти их должностными лицами или органами местного самоуправления. Муниципальные выборы: Муниципальные выборы проводятся в целях избрания депутатов членов выборного органа местного самоуправления выборных...
33729. Международное товарищество рабочих 134.79 KB
  Деятельность Маркса и Энгельса в 50-х годах В предвидении нового подъема рабочего движения Маркс и Энгельс приступили к собиранию сил рабочего класса, ослабленных поражениями и преследованиями, и занялись обобщением опыта недавно пройденного революционного пути
33730. Осуществление органами МСУ отдельных государственных полномочий 28 KB
  Порядок наделения органов местного самоуправления отдельными государственными полномочиями: Полномочия органов местного самоуправления установленные федеральными законами и законами субъектов Российской Федерации по вопросам не отнесенным к вопросам местного значения являются отдельными государственными полномочиями передаваемыми для осуществления органам местного самоуправления. Наделение органов местного самоуправления отдельными государственными полномочиями Российской Федерации осуществляется федеральными законами отдельными...
33731. Ответственность органов местного самоуправления и должностных лиц местного самоуправления 36 KB
  Ответственность органов местного самоуправления и должностных лиц местного самоуправления перед государством наступает на основании решения соответствующего суда в случае нарушения ими Конституции Российской Федерации федеральных конституционных законов федеральных законов конституции устава законов субъекта Российской Федерации устава муниципального образования а также в случае ненадлежащего осуществления указанными органами и должностными лицами переданных им отдельных государственных полномочий. В случае если соответствующим судом...
33732. Государственная гражданская служба: понятие, принципы, порядок прохождения 33.5 KB
  Согласно ФЗ N 79 от 27 июля 2004 года О государственной гражданской службе в РФ Государственная гражданская служба Российской Федерации вид государственной службы представляющей собой профессиональную служебную деятельность граждан Российской Федерации на должностях государственной гражданской службы Российской Федерации по обеспечению исполнения полномочий федеральных государственных органов государственных органов субъектов Российской Федерации лиц замещающих государственные должности Российской Федерации и лиц замещающих...
33733. Понятие трудового договора. Сторона трудового договора. Заключение и расторжение трудового договора 22 KB
  Понятие трудового договора. Сторона трудового договора. Заключение и расторжение трудового договора. Трудовому договору посвящена часть третья раздел третий трудового кодекса РФ.